1 / 14

Research Update

Research Update. Seon Kim Laboratory of Product and Process Design University of Illinois at Chicago Feb. 3 rd , 2011. Research Update. Separation case study 4 component mixtures separation network Testing 24 networks (18 non-sharp basic + 6 non basic)

grover
Download Presentation

Research Update

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Research Update Seon Kim Laboratory of Product and Process Design University of Illinois at Chicago Feb. 3rd, 2011

  2. Research Update Separation case study • 4 component mixtures separation network • Testing 24 networks (18 non-sharp basic + 6 non basic) • Optimization of efficiency with genetic algorithm • Analyzing 24 networks with overall cost • 3 different system: ideal, nonideal without Azeotroph, and nonideal azeotropic mixture

  3. Network Case study 18 basic networks + 6 non-basic network

  4. Column profiles Ode15s (MATLAB) Dassl (Delphi) Aspen

  5. Distillation flowsheet Delphi Code • Basic code TDesignSpec.net1_1; TMassBalance.AnyColumn; TAntoineClass.proc; TFindBoilingT.proc1; productT; InternalFlow; for sections:=0 to DesignVar.np-2 do begin ColumnProfileParameters(sections); PinchPointT_CPE; Tgrid_Preperation(sections); CompositionFinding; CompositionFinding_s; PolyApproximation_R; PolyApproximation_S; OverlappingTgrid(sections); PolyApp_OTWr; PolyApp_OTWs; OTWpoly; end; Polynomial approximation by Lagrange method Composition findings by DASSL solver Solve polynomial Find pinch point temperatures and compositions

  6. Distillation flowsheet Delphi Code • Visualization with automation var xr,xs,Tr,Ts,minBPT : variant; …… xr:=Xcomp_r; xs:=Xcomp_s; Tr:=Tr_EN_array; Ts:=Ts_EN_array; MatApp:=CreateOleObject('matlab.application'); MatApp.PutWorkspaceData('xr','base',xr); …… MatApp.Execute('plot(Tr,xr(:,1))'); MatApp.Execute('hold on'); MatApp.Execute('plot(Tr,xr(:,2))'); …… MatApp.Execute('plot(Ts,xs(:,1))'); ……

  7. Column profiles and pinch point • Column Profile Equation (Difference Point Equation) • Pinch point with 1D equation

  8. Pinch Point Delphi Code • Pinch point Procedure PinchPointT_CPE; Var …… begin Tolx:=1e-8; Tolf:=1e-10; Tolfun:=1; MaxIter:=30; for indexP:=0 to DesignVar.nc-1 do begin T0:=FindMax(Tbp)+500; for i:=0 to MaxIter do begin df1:=Pinchfunc_CPE(T0+Tolx,indexP); df2:=Pinchfunc_CPE(T0-Tolx,indexP); df:=(df1-df2)/(2*Tolx); T1:=T0-Pinchfunc_CPE(T0,indexP)/df; Tolfun:=T1-T0; . . . end; function Pinchfunc_CPE(T0:double;……) Var …… Begin for i:=0 to DesignVar.nc-1 do begin k[i]:=power(10,(TAnt.A[i]-TAnt.B[i]/(T0+……) a[i]:=(Rdelta+1)*k[i]-Rdelta; …… if indexP=0 then begin …… else if indexP=1 then begin for i:=0 to DesignVar.nc-1 do result0:= Xdelta[i]*b/a[i]+result0; result:=(result0-b)/(T0-Tpinch[0]); end else if ……

  9. Lagrange Polynomial • Lagrange Approximation • Estimation a missing function with known function values at neighboring points

  10. Polynomial Approximation Delphi Code Procedure LagrangeApp(x,y:array of double;…… …… // Denominater for i1:=0 to length(y)-1 do begin y1:=1; xi[i1]:=x[i1]; for i2:=0 to length(y)-1 do if i1 <> i2 then y1:=(x[i1]-x[i2])*y1; yout[i1]:=y[i1]/y1; end; // Numerator for h:=0 to length(x)-1 do begin xout[h,0]:=1; xi[h]:=0; x1:=0; for i1:=0 to length(x)-1 do x1:=xi[i1]+x1; xout[h,1]:=x1; for i1:=0 to length(x)-1 do begin for i2:= i1+1 to length(x)-1 do x1:=xi[i1]*xi[i2]+x1; …… procedure PolyApproximation_R; …… while n<length(Tr_EN_array)-1 do begin for i:=0 to DesignVar.nr-1 do begin Tr1[i]:=Tr_EN_array[n]; for j:=0 to nc-1 do Xr[i,j]:=Xcomp_r[n,j]; n:=n+1; end; for i:=0 to nc-1 do begin for j:=0 to DesignVar.nr-1 do Xr1[j]:=Xr[j,i]; LagrangeApp(Tr1,Xr1,coeff); for k:=0 to length(coeff) - 1 do CoeffM_R[i,m,k]:=coeff[k]; end; n:=n-1; ……

  11. Polynomial Approximation • Polynomial Approximation with Lagrange interpolation 3rd order approximation 4th order approximation

  12. Distillation flowsheet Delphi Code • Root finding procedure OTWpoly; …… for i:=0 to length(CoeffM_R)-1 do begin for j:=0 to 2*DesignVar.nr-2 do OTWpolyM[j]:=0; for j:=0 to DesignVar.nc-1 do begin for k:=0 to DesignVar.nr-1 do begin OTWSubPoly[j,k]:=CoeffM_R[i,j,k]-CoeffM_S[length(CoeffM_S)-1-i,j,k]; OTWSubPoly0[k]:=CoeffM_R[i,j,k]-CoeffM_S[length(CoeffM_S)-1-i,j,k]; end; Convolution(OTWSubPoly0,OTWSubPoly0,OTWSubPoly1); for k1:=0 to 2*DesignVar.nr-2 do OTWpolyM[k1]:=OTWpolyM[k1]+OTWSubPoly1[k1]; end; PolyDerivative(OTWpolyM,dOTWpolyM); Zeros_Laguerre(dOTWpolyM); ......

  13. Laguerre code procedure Zeros_Laguerre(P0:array of double); //take polynomial coeff array in order of a1+a2*x+a3*x^2+... …… begin // real coeffs -> complex coeffs. setlength(P,length(P0)); n:=length(P); for i:=0 to n-1 do begin P[i].Re:=P0[i]/P0[n-1]; P[i].Im:=0; end; …… // Root finding Algorithm while (cABS(aout)>aTol) and (Iter<=Maxiter) do begin Eval_func(x0,n,P,fval,dfval,d2fval); if (cabs(fval) < fTol) then break; g:=cFraction(dfval,fval); h:=cMinus(cMulti(g,g),cFraction(d2fval,fval)); a1:=rcFraction(n,cPlus(g,cSQRT(rcMulti(n-1,cMinus(rcMulti(n,h),cPower(g,2)))))); a2:=rcFraction(n,cMinus(g,cSQRT(rcMulti(n-1,cMinus(rcMulti(n,h),cPower(g,2)))))); ……

  14. Parametric polynomial & root finding

More Related