230 likes | 240 Views
This publication by Michael Klasen explores the factors affecting diffractive dijet photoproduction and its factorization at the LPSC Grenoble. It discusses the role of direct and resolved photons, survival probability, gluon density, and factorization scale dependence. The study also investigates the transition from gp to DIS and the importance of large ET in the process.
E N D
Diffractive Dijet Photoproduction Michael Klasen LPSC Grenoble April 28, 2005
Publications • With G. Kramer • PLB 508 (2001) 259: g p 2 jets+n • EPJC 38 (2004) 39: g p 2 jets+p • PRL 93 (2004) 232002: g*p 2 jets+p + 1 paper in preparation Michael Klasen, LPSC Grenoble
Hard diffraction: Does factorization hold? Deep inelastic scattering: Yes Direct photoproduction Hadroproduction: No Resolved photoproduction Why next-to-leading order? stot =sdir(xg,Mg)+sres(xg,Mg) AtLOxg=1,butatNLOxg1 log(Mg)-dependence cancels Diffr. hadroproduction of dijets: CDF Coll., PRL 84 (2000) 5043 Motivation Michael Klasen, LPSC Grenoble
Higgs Production at the LHC MH = 120 GeV – V. Khoze, A. Martin, A. Roeck, M. Ryskin, EPJC 25 (2002) 391 Michael Klasen, LPSC Grenoble
Diffractive Higgs Production V. Khoze, A. Martin, M. Ryskin, EPJC 26 (2002) 229 Michael Klasen, LPSC Grenoble
Diffractive processes at HERA: H1 Coll., EPS 2003 and DIS 2004 Inclusive DIS: Diffractive DIS: Experimental cuts: Kinematics Michael Klasen, LPSC Grenoble
Double factorization: G. Ingelman, P. Schlein, PLB 152 (1985) 256 Hard QCD factorization: Regge factorization: Pomeron flux factor: Pomeron tracectory: Diffractive Parton Distributions Michael Klasen, LPSC Grenoble
Diffractive deep inelastic scattering: J.C. Collins, PRD 57 (1998) 3051 Light cone coordinates: qm = (q+,q-,qT) Leading regions: H: qm O(Q) J: lm (0,Q/2,0T) A: |km|« O(Q) Soft gluon attachments: Poles in k+-plane: Finalstate: Upper half-plane Initial state: Lower half-plane Proof of Hard Factorization Michael Klasen, LPSC Grenoble
Direct photoproduction: Modify the Regge trajectory Resolved photoproduction: Factorization breaking Multipomeron Exchanges X X Michael Klasen, LPSC Grenoble
Diffractive Photoproduction of Dijets Cross section: Photon flux: Weizsäcker-Williams approximation Michael Klasen, LPSC Grenoble
y-dependence: Photon flux Small correlations due to exp. cuts xIP-dependence: Pomeron flux Subleading Reggeon contribution Factorizable Multipomeron Exchanges Michael Klasen, LPSC Grenoble
Hadronic collisions: Survival probability: Opacity / optical density: Ki = 1 g Kaidalov et al., EPJC 21 (2001) 521 Photoproduction: Generalized vector meson dominance: JPC= 1--: g r, w, … Fittedparameters(W = 200 GeV): Total cross section:stot (rp)=34mb Pomeron slope: B = 11.3 GeV-2 Transition probability: g = 0.6 ZEUS Coll., EPJ C2 (1998) 247 H1 Coll., EPJ C13 (2000) 371 Survival probability: R |S|2 0.34 Kaidalov et al., PLB 567 (2003) 61 Two-Channel Eikonal Model Michael Klasen, LPSC Grenoble
xg-dependence: Direct/resolved photons At LO, R = 1 agrees better with data! zIP-dependence: Gluon density in pom. Smaller uncertainties in 1/s ds/dzIP No Sign of Factorization Breaking at LO Michael Klasen, LPSC Grenoble
xg-dependence: Direct/resolved photons Large K-Factor Survival probability zIP-dependence: Gluon density in pom. Reduced scale uncertainties at NLO Non-FactorizableMultipomeronExchanges Michael Klasen, LPSC Grenoble
But: Data also support direct suppression! Michael Klasen, LPSC Grenoble
Inclusive photoproduction: MK, Rev. Mod. Phys. 74 (2002) 1221 Diffractive photoproduction: MK, G. Kramer, EPJC 38 (2004) 39 Factorization Scale Dependence Michael Klasen, LPSC Grenoble
Hadronization Corrections Observable and model dependent! Michael Klasen, LPSC Grenoble
Importance of large ET: Direct process dominates IS singularity less important Hadronization corrections small Experimentallydirectlyaccessible Less sensitive than xg Result: Suppressed result agrees Unsuppressed 50% too low How can we learn more? Critical role of IS singularity Transition from gp to DIS ET-Distribution Michael Klasen, LPSC Grenoble
Q2-dependence: MK, G. Kramer, PRL 93 (2004) 232002 zIP-dependence: MK, G. Kramer, PRL 93 (2004) 232002 High- to Low-Q2 Transition in DIS Michael Klasen, LPSC Grenoble
Factorization Scale Dependence MK, G. Kramer, to appear Michael Klasen, LPSC Grenoble
Q2-dependence: MK, G. Kramer, to appear zIP-dependence: MK, G. Kramer, to appear Factorization Scheme Dependence Michael Klasen, LPSC Grenoble
Components of Parton Densities in Photon • SaS parameterizations allow for separation: • Anomalous component: Resummation of IS singularity • Hadronic component: Vector meson dominance model • VMD component suppressed: • 10-4 for Q2 70 GeV2 • 10-2 for Q25 GeV2 • Anomalous component dominates: • Direct higher order contributions • Known from inclusive low-Q2 production Michael Klasen, LPSC Grenoble
Conclusions Hard diffraction: Factorizable or not? • Deep inelastic scattering: Yes Diffractive parton densities • Hadronic scattering: No Multipomeron exchanges • Important application: Diffractive Higgs production at LHC Diffractive photoproduction of dijets: Initial state singularity at NLO • Direct / resolved photoproduction: xg and Mg dependence • (Non-) factorizable multipomeron exchanges Two-channel eikonal model: • Generalized vector meson dominance: g r, w, … • Rapidity gap survival probability: R = 0.34 Related process: • Leading neutron with p-exchange (NB: fq/p, not fg/IP!) Michael Klasen, LPSC Grenoble