1 / 23

EXERCÍCIOS PROPOSTOS

EXERCÍCIOS PROPOSTOS. MATEMÁTICA Prof. Manuel. “Existem momentos bons e existem momentos maravilhosos. Os bons são aproveitados ao máximo, pois podem não mais acontecer; os momentos passados ao lado de quem se ama serão sempre maravilhosamente eternos.” (Fred Oliveira).

gunda
Download Presentation

EXERCÍCIOS PROPOSTOS

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. EXERCÍCIOS PROPOSTOS MATEMÁTICA Prof. Manuel

  2. “Existem momentos bons e existem momentos maravilhosos. Os bons são aproveitados ao máximo, pois podem não mais acontecer; os momentos passados ao lado de quem se ama serão sempre maravilhosamente eternos.” (Fred Oliveira)

  3. 01. O conjunto {x  R; -3 < x < 2} está contido em: A) {x  R; |x|  1} B) {x  R; |x| > 1} C) {x  R; |x| < 2} D) {x  R; |x|  2} E) {x  R; |x|  3}

  4. 02.Se 52-n = 75, então 3(5n) é igual a: A) B) D) 3 C) 1 E) 5

  5. 03.Uma pessoa supõe que seu relógio está 5 minu-tos atrasado, mas, na verdade, ele está 10 minu-tos adiantado.Essa pessoa que chega para um encontro marcado, julgando estar 15 minutos atrasada em relação ao horário combinado, chegou, na realidade, A) na hora certa. B) cinco minutos atrasada C) cinco minutos adiantada D) dez minutos atrasada E) dez minutos adiantada

  6. 04. O vencedor de uma prova de atletismo dava uma volta completa na pista em 50 segundos, enquanto o segundo colocado levava 1 minuto para completar uma volta.Quando o vencedor completou as 30 voltas da competição, o vice-campeão havia completado apenas: A) 24 voltas. B) 25 voltas. C) 26 voltas. D) 27 voltas. E) 28 voltas.

  7. 05. Ao responder às questões propostas em um teste, um aluno acertou 8 das 15 primeiras questões;  errou ou deixou de responder a 60% das questões restantes;  acertou 48% do número total das questões propostas. Se, para cada questão respondida corretamen- te, forem distribuídos 2 pontos e para cada questão não respondida ou respondida de for- ma incorreta for retirado 1 ponto, o total de pontos obtidos pelo aluno, no teste será: A) 11 B) 12 D) 18 C) 17 E) 22

  8. 06. O número complexo z, representado na figura, é uma das raízes do polinômio P(x) = x3 + bx2 + cx – 8, com b e c números reais.Sabendo-se que  = 60º e OM = 2, pode-se afirmar que a única raiz real de P(x) = 0 é: A) -2 B) -1 C) 0 D) 1 E) 2

  9. 07.As seqüências (a1, a2, a3, ...) e (b1, b2, b3, ...), com a1 = 2 e b1 = , são progressões geométricas crescentes de razão q e q2, respectivamente.Sendo b5 e 2a5, o número inteiro n para o qual an = 2bn é: A) 2 B) 3 D) 6 C) 4 E) 7

  10. 08.Se a e b são as raízes da equação x2 + px + q = 0, então a soma a2b + ab2 é igual a: A) -pq B) pq C) p2q2 D) p + q E) p2 + q2

  11. 09.O coeficiente de x4 no polinômio P(x)=(x+1)(2x -1)6 é igual a: A) 48 B) 50 C) 64 D) 76 E) 80

  12. 10.Se todos os anagramas obtidos através das per-mutações das cinco letras da sigla UEFS forem ordenados como em um dicionário, a sigla que ocupará a 17a posição será: A) FSUE B) SEUF D) UEFS C) SUEF E) UFES

  13. 11.O conjunto-imagem da função real é: A) ]-, 3] B) ]-, 4[ D) R - ]3, 4] C) ]3, +[ E) R

  14. 12. O gráfico que melhor representa a área S de um terreno retangular cujo perímetro mede 160m, em função do comprimento de um dos lados, é A) B) D) C) E)

  15. 13.Sendo f(x) = 23x-2 e g(x) funções reais, tais que f(g(x)) = x, pode-se afirmar que pertence ao conjunto: A) B) D) C) E)

  16. 14.A única solução real da equação log9(x + 1) = log3(2x) é um número: A) inteiro divisível por 6. B) inteiro divisível por 9. C) racional não inteiro. D) primo. E) irracional.

  17. 15.A expressão trigonométrica para0 < x < , é equivalente a: A) -2 B) 0 D) cos(x) – sen(x) C) 2 E) cos(2x) – sen(2x)

  18. 16. Sejam  e  ângulos complementares.Sabendo-se que a medida de  é igual ao triplo da medida de , pode-se afirmar que ô ângulo  -  mede: A) 40º B) 45º D) 55º C) 50º E) 60º

  19. 17. Da figura composta por 5 círculos, sabe-se que o círculo maior tem centro na origem dos eixos coordenados e o raio mede 2;  os círculos médios são tangentes entre si, na origem dos eixos coordenados, e tangentes ao círculo maior;  os círculos menores são tangentes aos círculos médios e ao círculo maior. O raio dos círculos menores mede, em u.c., A) B) D) • E)

  20. 18. Um frasco de remédio tem a forma de um cilindro circular reto com raio de 3cm e altura de 10cm e contem xarope em de seu volume total.Se uma pessoa tomar, todos os dias, de 12 em 12 horas, 15ml desse xarope, então a quantidade de xarope exis-tente no frasco é suficiente para, aproximadamente: A) 4 dias. C) 6 dias. E) 8 dias, B) 5 dias. D) 7 dias.

  21. 19. Os lados Ab e BC de um ângulo reto ABC estão sobre as retas r : 2x – y + 6 = 0 e s : ax + by + c = 0, com a e b constantes reais.Sendo P(1, 1) um ponto da reta s, pode-se afirmar: A) a < b < c B) a < c < b C) b < c < a D) c < a < b E) c < b < a

  22. 20.As retas paralelas r e s são tangentes à circunfe-rência de equação x2 + y2 – 6x – 2y = 0.Sendo dr a distância da reta r a origem do sistema de coordenadas cartesianas e ds, a distância da reta s a esse mesmo ponto, pode-se afirmar que dr + ds é igual a: A) 3 B) 3 C) 6 D) 2 E) 6

More Related