1 / 43

MESA and its cavity cryomodule

MESA and its cavity cryomodule. M ainz E nergy recovering S uperconducting A ccelerator : A small superconducting accelerator for particle and nuclear physics Kurt Aulenbacher f or the MESA-Project-team. LHeC -workshop Chavannes-de- Bogis January21, 2014. Contents.

hans
Download Presentation

MESA and its cavity cryomodule

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. MESA anditscavitycryomodule Mainz EnergyrecoveringSuperconductingAccelerator: A smallsuperconductingacceleratorforparticleandnuclearphysics Kurt Aulenbacher forthe MESA-Project-team LHeC-workshop Chavannes-de-Bogis January21, 2014 LHeC workshop

  2. Contents • Project objectives • R&D issues: Beamdynamics & Lattice • R&D issues: SRF LHeC workshop

  3. High power beam dump Experimental Hall Shaftbuilding MESA-Hall-1 MESA-Hall-2 Shielding MESA: Real estate conditions • No new buildings necessary • MAMI continues separately for • hadron structure exp. ~1GeV scale • MESA takes over “low energy” • experiments ~100MeV scale LHeC workshop

  4. PIT MESA: A Concept and its history 2ERL IN 1 2 3 • 3/2009 MAMI & beyond conference: idea of ERL-Project „MESA“ presented • 2011: MESA accelerator „stage-1“ becomesmajorpartof • proposalfor excellence cluster „PRISMA“, • P2 experimentimportantpartofproposalfor SFB1044 • 11/2011 SFB 1044 proposalaccepted • 1/2012 Evaluation of PRISMA proposal & startof SFB1044 • 6/2012 PRISMA Excellence clusteraccepted. • 12/2012 PRISMA clusterstarts, fundingperiodfiveyears SC PS RC DU to PV-experiment P2 LHeC workshop

  5. PIT MESAand its Research fields MESA‘smainobjectives Acceleratorphysics: Multiturn, superconducting ERL ParticlePhysics: Precision measurementoftheweakmixing angle (P2-experiment) New experimental techniquefornuclearandparticlephysics: The PIT - high luminosity/lowbackgroundatlowenergies 2ERL IN 1 2 3 MESA BEAM PARAMETERS: c.w. beam EB-mode: 150 mA, 200 MeV spin polarized beam (liquid Hydrogen target L~1039) ERL-mode: 10mA, 100 MeV unpolarized beam (Pseudo-Internal Hydrogen Gas target, PIT L~1035) SC PS RC DU Duringtheapplicationprocessitbecame evident, that not enoughfundingwouldbeavailabletorealizetheenvisaged Beam parameters – only a „stage-1“ was requested. to PV-experiment P2 LHeC workshop

  6. MESA-Beam-parameters in stages 1 (2) Additional demands occur due to main external experiment.... LHeC workshop

  7. EB-Experiment: “P2” 150 mA Beamcurrent, 60cm lq. H2, Beampol: 85%. 10000 h Data-taking (~13-15000 h Runtime) High accuracy polarization measurement (DP/P=0.5% !!) Extremely high demands on control of HC-fluctuations! • ~4000h/Year Runtime • Accelerator must be optimized for reliability& stability Good news: Very flat minimumof total errorallowstoreduce beam energyto ~150 MeV P2 is MESA-workhorse experiment LHeC workshop

  8. A possible accelerator layout From ERL Exp To ERL Exp • Vertical stacking “a la CEBAF” keeps transverse footprint small • compatibility with building. • Initial idea by Ralph Eichhorn • Vertical spreaders based on preliminary design for LHeC TF LHeC workshop

  9. A possible accelerator layout • Vertical stacking “a la CEBAF” keeps transverse footprint small • compatibility with building. • Initial idea by Ralph Eichhorn • Vertical spreaders based on preliminary design for LHeC TF LHeC workshop

  10. Turn 0 Turn 1 Turn 2 Turn 3 Turn 4 Turn 5 MESA-EB : 0-order Lattice • MAD-X calculation • (Half-)Turn 0: 5MeV • Turn 1: 30MeV • Turn 2: 55MeV • Turn 3: 80MeV • Turn 4: 105MeV • Turn 5: 130MeV

  11. MESA& experiments PV PIT • Size Based on 1300 MHz- „ ELBE“-type Modules • Sufficient for stage-1, but limited current • Length of acclerator can be extended by about 4 meters LHeC workshop

  12. Itshouldbepossibletoachievesuitablematchingfordecelleration (fromexitof turn5) EnergyRecovery: Beamline

  13. Turn 4 Turn 3 Turn 2 Turn 1 Zero-order in ERL-mode • Matchingthrough • experimental hall line • assumed

  14. Accelerator: R&D Issues Constraintsby Budget, Space and Schedule: Technology/Physicssolutions must becompatible! Technology: • Cryogenics • Cryomodule Physics: • Sources/Injector • BBU Instability • Rezirculator (Lattice) Design LHeC workshop

  15. Cryoplant-Constraint 200l /h, lq. Helium Available Power at 2K ≤100 Watt  DE>50MeV fromLinac would be unrealistic LHeC workshop

  16. Cryomodulesand BBU „Twoseater“ ELBE Cryomodule With 2*9cell „TESLA“ cavities J. Teichert et al. NIMA 557 (2006) 239 • “ELBE” –Modules are suitable for high gradient c.w. op. • Commercially available, no additional R&D • Costs & Delivery time are (to some extent) predictable • Limitation in Cryopower requires Q0=1010 at 14MeV/m • (achieved at DESY/FLASH in operation with TESLA cavity) MESA B. Auneet al. PRST/AB 3 092001 (2000) LHeC workshop

  17. Cryomodulesand BBU 9 cell ‘TESLA’ p-mode Cavity: Higher order modes (HOMs) with „bands“ ofEigenmodes e.g. TM11-like. BBU- Instabilityforbeamcurrent > IT In recirc. Linacs: Feedback-loop withinstabilitythreshold! (simplifiedformula!) General treatmentforERL‘s G.H. Hoffstaetter, I. Bazarov: PRSTAB 7 054401 (2004) LHeC workshop

  18. Cryomodulesund BBU • „High current“ – Recirculatorscallfor : • Strong HOM damping (TESLA-Cavitiesare not optimzed!) • Flexible Recirculationopticstoadjust T12 , T34 but probably also T56 • Conclusions/conflicts: • „Non-Tesla Cryomodule“ for MESA  But: compatiblewithbudget & schedule? • Second bulletcallsforindependentorbitrecirculation • But: Polytronrecirculator is more compact , better inherent stability. Initial-Plan: Use TESLA/Rossendorf Module („Stage-1“ with limited current) LHeC workshop

  19. Cryomodule alternative-1 Discussions with JLAB : Fabrication of one further „C-100“ cryomodule , identical To the ones used for CEBAF Energy doubling • JLAB „8-seater“ C-100 Cryomodule • at 1500 MHZ • + better HOM damping than TESLA • + several buildt and tested • + MESA energy doubling • possible with • investment in cryoplant • C100 Module too long • for exisiting shaft • Ongoing negociations for „C100/2“ • Current capability a few milliamp Source: JLAB LHeC workshop

  20. Cryomodule alternative-2 • Contactswith CERN LHC/LHeCgroup (O. Bruning, E. Jensen, M. Klein): • LHEC needscryomodulewithfrequencyas an integer multiple of LHC RF (40.079MHz) • (802 MHz is almost RF-frequency for SPS, the LHC injector) • CERN groupplanstobuild ERL testfacilitywith, e.g., 802 MHz cryomodule • Indications for a support of Testfacility+cryomodule project by CERN-management • (final decision end of September 13) • Common objectives, complementarycompetences, similartimescale: • This maybe a greatoppurtunity! E. Jensen, Talk atDaresburyLHeCmeeting January, 2013 LHeC workshop

  21. Conclusion • MESA is a low 100MeV- scale electron accelerator with external • beam-mode (EB) and ERL-mode 1MW beam power option • MESA is dedicated to electron scattering experiments: • Precision measurement of Weinberg angle (EB) and generic • experimentation technique Pseudo internal target -PIT – in ERL-mode • Three frequency options 800 MHZ (LHeC) 1300 MHz (ILC), • 1500 MHz (JLAB) • HOM damped cryomodule decisive component, tendering in 6/2014, • delivery expected end 2016 • Lattice and infrastructure will be also completed by end of 2016 • Commisioning of machine in 2017. - LHeC workshop

  22. Acknowledgments • MESA-Project-team: • I. Alexander, K. Aulenbacher, V. Bechthold, Ma.Dehn,Mo.Dehn, • J. Diefenbach, F. Fichtner, S. Friederich S. Heidrich, R. Heine, K.H. Kaiser, E. Kirsch, H.J.-Kreidel, Ch. Matejcek, F. Schlander, V.Schmitt, D. Simon • MESA issupportedby : • State ofRhinelandPalatinate • German universityexcellence initiative: • PRISMA-Cluster of excellence • German Science foundation (DFG): SFB 1044 • German Ministryofscience & ed. (BMBF ): • -PCHB- Consortium(Photocathodes for high brillancebeams) • -HOPE-Consortium (Hochbrillante Photoelektronenquellen) • WE ARE HIRING! • - ERL beam dynamics • Beam diagnostic, • vacuum and geodasics • Contact: • aulenbac@kph.uni-mainz.de LHeC workshop

  23. Thank you LHeC workshop

  24. Spares LHeC workshop

  25. Injector-Linac (ILAC) • Motivation for normal Conducting -ILAC: • Easy maintenance • Nocryogenicload, • Established design (based on MAMI-ILAC, Th. Weis, H. Euteneuer 1984) • Phase spaceshapingby „gradedbeta“ structure • ~100kW RF Power ( 50kW beam loading included) • T=5MeV, length: 11,5 m Dy100%< 2.3° DE/Erms=0.01% Detailed results published at IPAC 2013 (R. Heine et al.) LHeC workshop

  26. Beam-dynamics: Recirculator-Lattices LHeC workshop

  27. Beam-dynamics: Recirculator-Lattices „CEBAF“ inspired Design: Ralph Eichhorn • Advantage: • Identical horizontal deflectionsandmagnets • High symmetry • Problem: Vertikal stackingunderveryconstrainedlongorbitaxis • Large verticaldeflectionangles • Small spaceforcompensationquads. • Verticaldispersionprobablydifficulttocontrol Wepresentlyinvestigate also twotypesof „flat“ lattices LHeC workshop

  28. Horizontal lattices: “Conventional recirculator” „S-DALINAC“ inspired 105/155 105 155 105 105/205 55 205 105 Daniel Simon, Diplomathesis: Sketch of flat latticewith realisticdipoledimensions Lattice design is ongoing!! Second option for flat lattice: Polytron recirculator? LHeC workshop

  29. Asymmetric Polytron of second order (AP2) (A low budget lattice for up to 8 recirculations) „MAMI-C“ inspired Preliminary design by K.H. Kaiser Horizontallyfocusingsinguletts DE=25 MeV Injectionat 5MeV + transvere optics promising ! + order of magnitude less magnets /parameters compared to conventional recirculator - Very large turn by turn phase shifts must be compensated byshicanes in several (not all) turns. LHeC workshop

  30. AP2 –advantages wrt other lattices 155 105 105/205 105 205 55 105 • 50% reductionofcryoload • Significant reduction of invest for cryomodules • Much less space required • Energystability/stabilizationas in MAMI due to large R56, longbunchesallowed AP2 iskindof a temptation… LHeC workshop

  31. The AP2 –temptation: vade retro?! polytron ? Detail from: Hyronimus Bosch: Temptationof St. Anthony (15th century) LHeC workshop

  32. The AP2 –temptation: vade retro?! Possibledisadvantagesand/orshowstoppers • Fixed optics&largernumberofrecirculations •  (too) low BBU threshold? • Shicanesmandatory • Complexmagnetswithsmallbendingradius • (first turn critical) • 25 MeV req. 4 turn ERL (8mA in Linac at stage-1) ?? • Upgrade to 80mA (stage-2)???? LHeC workshop

  33. MESA-Collaborations • Collaborationbetween HZB & KPH • Consortiawithin BMBF: HOPE (High brillancesources) KPH/HZDR/HZB • and PCHB (Photocathodesfor high brillancebeams, manypartners) • Contactsrelatedto ERL problemswith: CERN/Daresbury/BNL/Daresbury •  CryomoduleCollaboration?? LHeC workshop

  34. MESA-Staffing MESA is PRISMA „Project E“. Project leaders: Kurt Aulenbacher & Frank Maas Black: PRISMA-personel/Blue: KPH-staff, Percentage: workfractiondevotedto MESA/Green: BMBF-personel (*) : Large reservoirof Master/diplomastudents! (**) Technician will beintegrated in TBV. • Acceleratorworkshop „TBB“ (6 workers&technicians): • Contributesstronglyto MESA infrastructure (has also tosupport MAMI anditsexperiments! ) • Electronics (TBE), mechanicalworkshops (TBM), vacuum&cryogenics (TBV): • Contributeto MESA withintheircapacities! (on average ~6 workers/techicians/engineers in eachunit) • Further MAMI staff (technicians, engineers, operators) are, as a rule, requiredfor MAMI operation, but maydeliversupportifcapacityallows. LHeC workshop

  35. Possible CERN/MAINZ/+X Collaboration Fabricationof a dedicated 802MHz cryomodule: Whatmaywecontribute? • Manpower (Post-Docs, PhDstudents) • Invest (same amountasforcommercialacquisition) • Infrastructure in HIM building(cleanroom, horizontal test stand/bunker) • But: Onlyvery limited numberofengineers, designers, etc…..! Fabricationof a dedicated 802 MHz cryomodule: Whereweneedsupportfromcollaborators • Cryomodule design • Resonator, HOM damping, etc design • Additional invest ??? • Project coordination, management, administration??? • ….. CERN/MESA Consultationstodefine a concrete plan „Whatittakestoachieve a newcryomodule“ will begin in thefirstweekof August. LHeC workshop F. Marhauser ,

  36. Horizontal lattices: Segment Magnet Recirculator 90 degree Segment • Segment- or „Polytron“- magnet: • Each Orbit entersandexitsatTHE SAME Pole edge • Orbit is SYMMETRIC around normal to pole edge: •  Deflection angle 2*pol faceinclination • Deflection angle isindependentofenergy • Veryconvenienttransv. Optics(Apart fromfringefields) • Dispersioncancelsafter eachtwodeflections • Circularorbitsachieved after N*2 Segments • N=1 Microtron (not suitablefor MESA) • N=2 Double sidedMicrotron (Twodispersionfreesections) • N=3 Hexatron E1 E2 S1 Pole face S2 Weinvestigate an AsymmetricPolytronofsecondorder (AP2) (Not: „singlesided DSM“) LHeC workshop

  37. “Low budget “ Lattice Alternative: Segment (Polytron-)Magnet Recirculator: Asymmetric Polytron of second order (AP2) Injectionat 5MeV Single Cryomodule DE=25MeV AP2-Coherence Condition: Distancebetweenadjacentorbits: 2nd non-dispersive straight First non-dispersive -LINAC-straight) „MAMI-C inspired“ 30 B~0.82 T 1. Rec. DO 105 4. Rec. 7. Rec. 180 205 2 m <2m <2m Design: K.H. Kaiser LHeC workshop

  38. Infrastructure issues Building& real estate Propriatoris „LBB“ 155 LBB= Landesbetrieb Liegenschaften und Bau Betreuung 105 55 • Buildinghasthickwallswhichhavetobecut/drilled (atapropriateplaces): • Buildingintegrety, fireprotectionby LBB & externalcompanies • Sufficientelectrical & cooling power isavailable, but machinecoolingwaterhydrauliclayout &temperaturestabilizationby LBB & externalcompanies, • Option formanagingotherinstallationworkby in housestaff, in particular: lq. Helium distribution/2K booster, Radiation ProtectionApplication LHeC workshop

  39. Horizontal Optics L2=70cm 2L1=960cm L2 Singulets in optisch gleichem Abstand F LHeC workshop

  40. VerticalOptics Norm. Emittanz:10mm*mrad*pi *1/3 Counter-field & gradient leadto strong longitudinal Phase shifts! LHeC workshop

  41. MESA Demonstrationsexperiment an MAMI: 100mA/855MeV auf 0.4% rad. length Tantal (2 WochenLaufzeit) (H. Merkel et al. PRL 106 251802 (2011)) Region interessantwg. (g-2)m Abweichung SuchenachdunklenPhotonen an MAMI/MESA “Bump-hunt” Experimentekönnen (MA’> 100MeV) sofortbegonnenwerden: MAMI/A-1 und JLAB/Aspect LHeC workshop

  42. PIT ERL/PIT: Einneues Regime bei E<1GeV Area:22*14m2 MESA-LAYOUT 10s beam envelope 2mm dia H2 beam in 2ERL IN Dublett Dublett 2 m long tube 1 2 3 Pump • Target dichteN=2*1018 atoms/cm-2 (3.2 mg/cm2, 5*10-8 X0) •  I0=10-2A: L= 1.2*1035cm-2s-1 • (mittlerer) Enereverlust (Ionisation): ~ 17eV •  RMS Streuwinkel (Vielfachstreuung): 10mrad • Single passStrahlverschlechterungistakzeptabel SC PS RC DU to PV-experiment LHeC workshop

  43. PIT MESA: Concept and its history 2ERL IN 1 2 3 SC PS BEAM PARAMETERS: 1.3 GHz c.w. EB-mode: 150 mA, 200 MeV polarized beam (liquid Hydrogen target L~1039) ERL-mode: 10mA, 100 MeV unpolarized beam (Pseudo-Internal Hydrogen Gas target, PIT L~1035) RC DU to PV-experiment LHeC workshop

More Related