1 / 20

First CCE and TCT measurements on irradiated diodes of the CMS-HPK-Campaign 24.05.2011

First CCE and TCT measurements on irradiated diodes of the CMS-HPK-Campaign 24.05.2011. Robert Eber A. Dierlamm , Th.Müller , W. de Boer, P. Steck , Th. Pöhlsen (HH), Ch. Scharf (HH). Outline. Setups and Groups Preparation for TCT and CCE measurements Stability measurements

hasana
Download Presentation

First CCE and TCT measurements on irradiated diodes of the CMS-HPK-Campaign 24.05.2011

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. First CCE and TCT measurements on irradiated diodes of the CMS-HPK-Campaign 24.05.2011 Robert Eber A. Dierlamm, Th.Müller, W. de Boer, P. Steck, Th. Pöhlsen (HH), Ch. Scharf (HH)

  2. Outline • Setups and Groups • Preparationfor TCT and CCE measurements • Stabilitymeasurements • Backsidemeasurementswith 880nm • Comparisonof FZ / MCz material • Charge Collectionof non-irradiateddiodes • CCE ofirradiateddiodes • TCT ofirradiateddiodes • Trappingtimes • Conclusionand Outlook

  3. Setups for CCE and TCT measurements • Institutes involved in diodemeasurements • CERN, Hamburg, Louvain, Karlsruhe

  4. Specificationsof CCE / TCT measurements • CCE measurements • Measurement ofchargecollection, simulationof a MIP • Integrated signalimportant • TCT measurements • Time resolvedcurves • Observation of 1 chargecarrierthroughthediode • Neededfortrappingtimesandelectricfield • Lasers: • >1000nm for CCE • Redfor TCT (~680nm) • 880nm forbackside TCT • Laser intensity < 100 MIPs • Repetition rate 200Hz • Min. 5GS/s Oscilloscope • Averagingofwaveforms > 500 • Measurement steps: • 0V-1000V in 10V steps • Nobreakdown • Non-irradiateddiodes • 20°C, 0°C, -20°C • Irradiateddiodes • 0°C, (-10°C), -20°C, (-30°C) • Severalannealingsteps

  5. Backsidemeasurements • Backside TCT measurementsnot possible on thindiodesbecauseofdeepdiffusion • Signal generationpossible in • 320µm thick FZ diodes • 200µm MCzdiodes • Due torelativelydeepbacksideimplantationandbacksideproperties on FZ diodes – generationofchargecarriers not possiblewithred Laser (680nm) on FZ • IR Laser light shot an FZ backsidegeneratesonly ~20% offrontsidesignal MCz FZ

  6. Backsidemeasurements • Red Laser workswellforMCzdiodes • Not a deepimplantation on thebackside – different processing • Back/front chargecollection ~ 80% • Forcomparison, FZ material with a physicalthicknessof 200µm isorderedand will arrive in autumnthisyear

  7. Backsidemeasurements Penetration depth [µm] • Use 880nm Laser forillumination on thebacksidefor FZ material • Signal looksalmostlike a redone • Possibilitytolookatonechargecarrier in FZ 320µm material • Atlowvoltages • Broadsignalcomingfromdiffusion out ofthedeepdiffusionregion • Athighervoltages • Long tailsatthe end of signal • First smallpeak in signal due toelectrons (n-type diode) • Usefulforanalysis? Wavelength [nm]

  8. CCE measurementofunirradiateddiodes • Signal generationwithinfrared Laser (1055nm) • Becauseofindirectbandgap in silicon, fewerchargecarriersareproduced • Calibratesignalfor different temperatures • Red Laser alwaysgeneratesthe same amountofchargecarrierswhenshot on frontside(irradiateddiodeexample) 320µm, n-type diode

  9. CCE measurementofunirradiateddiodes • Signal generationwithinfrared Laser (1055nm) • CCE normalizedtothe 320µm thickdiodeof same type • Slightincrease in CCE(V) seenfor 200µm and 120µm thickdiodes • Gainmoreacitvethickness due todeepdiffusionat high voltages • Charge collectionratio in expectedrange • 63% for 200µm, (67% for 215µm) • 38% for 120µm, (45% for 145µm)

  10. Charge collection on different wafers • Takingintoaccount • Attenuationlengthoflaser • Measuredthicknessfrom CV • Deviationsof max. 5% frommeanvalue [1] Collectedchargecompared on different typesofwafers. [1]

  11. CCE measurementofirradiateddiodes • Deviations in chargecollectionbetweensmalland large diodesnegligible • After irradiation • Almostsame chargecollectionseenbetween L and S • Different irradiationstep – same Charge collection Vdep Vdep

  12. CCE measurementsofirradiateddiodes • Proton irradiated p-spray diodesreach 100% chargecollection after irradiation • Differences in chargecollectionof FZ200µm seen • Not same diode, different activethickness (not corrected) • 120µm • Higher electricfields - Gainevenmoreactivethickness after irradiation HH KA

  13. CCE measurementofirradiateddiodes • Comparisonof 320µm thickdiodesat T=0°C • Irradiation: F(p) = 1.1*1014neq/cm2, F(n) = 1014neq/cm2 • Annealing: 10min@60°C Vdep Vdep

  14. CCE measurementsofirradiateddiodes • Somediodesshowedvariationmeasuringseveraltimes - remeasure • Different Setups at HH / KA in quitegoodagreementwhennormalizedto 320µm thickdiode • Different Annealing! KA: 10min@60°C, HH: 2h@RT • Errors ±5% [F] = neq/cm2

  15. TCT measurements on irradiateddiodes • TCT measurements • Signal shapeofirradiateddiodes • RedLaser (680nm) • Here: Large 320µm n-type diodes • Verynice double peakfor n-type diodes (electrons) • Time resolutionshouldimprovewithsmalldiodes (lowercapacitance)

  16. TCT measurements on irradiateddiodes • Red Laser shot on frontsideofdiodes • Trappingtimescalculatedwithchargecorrectionmethod (CCM) • Annealing: ~50h at RT • Usedmodelforeffectivetrappingtimes: • Whatto do withthinnerdevices? front holes in p-type diodes e- in n-type diodes Expectionreference: [4]

  17. Summary andconclusions • First irradiationofdiodessuccessful (neutrons, protons, F=1014neq/cm2) • Comparabilityofsetups in last step (CCE) quitegood • Beginninginvestigations on TCT curves • Trappingtimes: electrons fit toexpectedvalues, holes do not • More investigationnecessary • Thindevices • Definemethod in thediodegrouptogettrappingtimes (probably not CCM) Outlook • First standardirradiationofthe CMS-HPK-Campaignsoon • More irradiationsand additional irradiationstepsfordiodes • More materialsinvolved in nextirradiations: FZ, MCz, Epi • Start comparisonof CCE of different materials,bulkdopingsandmixedirradiationscenarios

  18. Thankyouforyour Attention!

  19. References [1] Diode meeting, April 24th 2011, Thomas Pöhlsen; Institut für Experimentalphysik, Universität Hamburg. https://indico.cern.ch/conferenceDisplay.py?confId=132650 [2] Sensor upgrade meeting, Feb. 17th 2011, Georg Steinbrück, Thomas Pöhlsen;Institut für Experimentalphysik, Universität Hamburg. https://indico.cern.ch/conferenceDisplay.py?confId=125774 [3] Measurementsofirradiateddiodes, Christian Scharf; Institut für Experimentalphysik, Universität Hamburg. [4] G. Kramberger et al., Nuclear Instruments andMethods in Physics Research A 481, 2002, 297-305

  20. CCE measurementofunirradiateddiodes • Collectedcharge: depositedchargein depletedvolume + outdiffusingchargedeposited in undepletedvolume • Neglectingdiffusion • Q ~ depletionwidth ~ 1/C • CCE determinedwith IR Laser fromfrontside • Nocorrectionsforreflectionsorabsorption • CCE measurementsconfirm CV measurementsqualitatively • CV and CC measurementsarecomparedwithrespecttodifferencesbetween Diode_1 and Diode_2 ofthe same wafer 1/C [1/F], Q[a.u.] Source: [2]

More Related