410 likes | 719 Views
Data Blitz. Group presentation #7 Craig Milroy, 02/22/12. (I) Films, foams & fibers. (a) Electrospinning apparatus. Electrospun fibers (methods). Table 1: Electrospinning parameters . Parameter Setpoints____ solvent type CHCl3, THF, HFIP
E N D
Data Blitz Group presentation #7 Craig Milroy, 02/22/12
Electrospun fibers (methods) Table 1: Electrospinning parameters. Parameter Setpoints____ solvent type CHCl3, THF, HFIP polymer wt.% 8wt%, 10wt%, 12wt% E-field strength 12 kV, 15 kV polymer flow rate 3 mL/hr, 5 mL/hr collection distance 8 cm, 10 cm *** See SEM images in word document***
Summary of results • HFIP yields best fibers at 8 wt% • 10 wt% produces electrospray fiber/films • 12 wt% produces “black” fibers • THF yields best fibers at 12 wt% • 8 wt% and 10 wt % produce mesh/spray • CHCl3 produces fibers at 8 wt%
Further steps (underway) • Determine effect of parameter setpoints on average fiber diameter (Image-J) for optimal solution concentrations • Measure conductivity (parallel wire, Kelvin probe) as a function of fiber mat thickness • Test mechanical properties (INSTRON) • Investigate dependence of conductivity on strain history (INSTRON cycles) • PC12 cell evaluation
(b) Films • Solvent-cast film summary: • objective (homogeneous) • conductivity method (4-pt probe vs. //-wires) • whole-film conductivity test • Dog-bone strategy • Dog-bone results
(1) whole-film conductivity, (2) 3 dog-bones from each film (top and middle)
Films (2) • Spin coat:
Films (3) • Electrospray “thick films”
(II) Melanin synthesis ELECTROSYNTHESIS: 0.075 M DHICA 1.0 M LiClO4 Acetone solvent phase 2-electrode set-up Galvanostatic: 2, 3, 4 V Potentiostatic: 0.1 and 0.2 mA/cm2
Cyclic voltammetry Solvent (PBS) Electroactive film
Melanin • Films to date are not consistently electroactive • Will “spontaneous” spincoat films display the same properties as echem films? • Can we control melanin film structure?
Melanin • Conjugation strategy 1 2 3
(III) Prelim-related items Aim 1: CPs for controlled mass flux
Conjugated polymers Collier, Camp, Hudson, Schmidt. J Biomed Mater Res 2000; 50:574–84. Heeger (Nobel Lecture). Rev Mod Phys 73 (2001) 681-701.
Charge transport in CP neutral polaron formation bipolaron formation *** can also n-type dope *** Pron&Rannou. Prog Polym Sci, 27, 2002. Heinze et al. Chem Rev 2010, 110:4724-4771.
IONIC charge transport in CP Heinze et al. Chem Rev 2010, 110:4724-4771.
AIM 1: Dopants and conductivity Ateh DD, Vadgama P, Navsaria HA. Culture of human keratinocytes on polypyrrole-based conducting polymers. Tissue Eng 2006;12:645–55.
IONIC charge transport in CP Leucoemeraldine (fully reduced) low potential Emeraldine (partially oxidized) Pernigranaline(fully oxidized) Degradation product (overoxidized PANi) high potential Pile, Hillier. J Memb Sci 208 (2002) 119–131.
IONIC charge transport in CP D.L. Pile, A.C. Hillier / Journal of Membrane Science 208 (2002) 119–131.
IONIC charge transport in CP P E L Pile, Hillier. J Memb Sci 208 (2002) 119–131.
(III) Prelim-related items Aim 1: CPs for controlled mass flux • Monomers: Py, EDOT, analine • Dopants: NaCl, PSS, SDS • Potentiostatic: 0.8 V, 1.0 V, 1.2 V • Galvanostatic: 1 mA/cm2, 1.5 mA/cm2 • Linear sweep voltammetry: 5, 10, 20 cycles and 0.05 and 0.1 V/s sweep rates
PEDOT (potentiostatic synthesis) 1.2 V 1.0 V 0.8 V
AIM 1: Analytical methods Giuseppe-Elie. Transport of Calcium Ions Within Poly(HEMA)-based Biomimetic Hydrogels