1 / 148

Chapter 5 Expectations

Chapter 5 Expectations. 主講人 : 虞台文. Content. Introduction Expectation of a Function of a Random Variable Expectation of Functions of Multiple Random Variables Important Properties of Expectation Conditional Expectations Moment Generating Functions Inequalities

helki
Download Presentation

Chapter 5 Expectations

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Chapter 5 Expectations 主講人:虞台文

  2. Content • Introduction • Expectation of a Function of a Random Variable • Expectation of Functions of Multiple Random Variables • Important Properties of Expectation • Conditional Expectations • Moment Generating Functions • Inequalities • The Weak Law of Large Numbers and Central Limit Theorems

  3. Chapter 5 Expectations Introduction

  4. 有夢最美

  5. 有夢最美

  6. Definition  Expectation The expectation (mean), E[X] or X, of a random variable X is defined by:

  7. Definition  Expectation The expectation (mean), E[X] or X, of a random variable X is defined by: provided that the relevant sum or integral is absolutely convergent, i.e.,

  8. 有些隨機變數不存在期望值。 若存在則為一常數。 Definition  Expectation The expectation (mean), E[X] or X, of a random variable X is defined by: provided that the relevant sum or integral is absolutely convergent, i.e.,

  9. Example 1 Let X denote #defectives in the experiment.

  10. Example 2

  11. Example 3  驗證此為一正確之pdf

  12. Example 3

  13. Chapter 5 Expectations Expectation of a Function of a Random Variable

  14. The Expectation of Y=g(X)

  15. The Expectation of Y=g(X)

  16. Example 4

  17. Example 5

  18. 某些g(X)吾人特感興趣 第k次中央動差 第k次動差 第ㄧ次動差謂之均數(mean) 第二次中央動差謂之變異數(variance) Moments

  19. 均數、變異數與標準差 X:為標準差

  20. X ~ B(n, p) E[X]=?Var[X]=? Example 6

  21. X ~ B(n, p) E[X]=?Var[X]=? Example 6

  22. X ~ B(n, p) E[X]=?Var[X]=? Example 6

  23. X ~ Exp() E[X]=?Var[X]=? Example 7

  24. Summary of Important Moments of Random Variables

  25. Chapter 5 Expectations Expectation of Functions of Multiple Random Variables

  26. The Expectation of Y = g(X1, …, Xn)

  27. Y X Example 8 p(x, y)

  28. Example 9

  29. Chapter 5 Expectations Important Properties of Expectation

  30. 常數之期望值為常數 Linearity E1. E2. X1, X2, …, Xn間不須具備任何條件,上項特性均成立。

  31. Example 10 令X與Y為兩連續型隨機變數,證明E[X+Y] = E[X]+E[Y].

  32. A Question 令X與Y為兩連續型隨機變數,證明E[X+Y] = E[X]+E[Y]. ?

  33. Independence E3. If random variables X1, . . ., Xn are independent, then

  34. Example 11 令X與Y為兩獨立之連續型隨機變數,證明E[XY] = E[X]E[Y].

  35. XY A Question 令X與Y為兩獨立之連續型隨機變數,證明E[XY] = E[X]E[Y]. ?

  36. XY  Example 12

  37. A Question ?

  38. Define The Variance of Sum

  39. The Variance of Sum

  40. The Covariance 差積之期望值

  41. The Covariance

  42. Example 13

  43. XY A Question ?

  44. Properties Related to Covariance E4. E5.

  45. Properties Related to Covariance E4. E5. Fact:

  46. Properties Related to Covariance E4. E5. E6. E7.

  47. Example 14

  48. Example 14

  49. More Properties on Covariance E8.

  50. More Properties on Covariance E8. E9.

More Related