370 likes | 674 Views
Fusão e Fissão Nuclear: uma breve introdução. Reginaldo A. Zara CCET-Unioeste. Unioeste, 14/12/2007. FUSÃO E FISSÃO NUCLEAR. Como podem os prótons ficar confinados em uma região tão pequena como é o núcleo do átomo, sendo que existe uma forte repulsão eletrostática entre eles?
E N D
Fusão e Fissão Nuclear: uma breve introdução Reginaldo A. Zara CCET-Unioeste Unioeste, 14/12/2007.
FUSÃO E FISSÃO NUCLEAR • Como podem os prótons ficar confinados em uma região tão pequena como é o núcleo do átomo, sendo que existe uma forte repulsão eletrostática entre eles? • Os prótons e nêutrons do núcleo do átomo são ligados por uma energia enorme – força nuclear forte
Força nuclear forte– força de curtíssimo alcance, mas que, dentro do seu raio de ação, é muito mais intensa que a gravitacional e a eletromagnética. • Quando um nêutron atinge o átomo, a ligação se rompe, o núcleo se divide, libera partículas e energia • Nas reações que envolvem núcleos, as transformações de massa em energia e vice-versa estão sempre presentes. Assim, nestas reações, é de uso fundamental a equação de Einstein.
Fusão: Uma breve introdução • A fusão nuclear dois ou mais núcleos atômicos se juntam, formando um outro núcleo maior; • É necessária muita energia cinética, que permita vencer a repulsão dos núcleos e haja o contato e a iteração entre eles; • A energia liberada depois da fusão é geralmente muito maior que a energia consumida; • A fusão ocorre mais facilmente entre núcleos que têm um pequeno número de prótons;
Reações de fusão - A principal reação de fusão que ocorre no interior do Sol. • A reação que ocorre mais facilmente é aquela em que o deutério se funde com o trício (ou trítio) produzindo uma partícula alfa (núcleo de hélio 4) e um nêutron, conforme a reação 3 abaixo. • D2 + D2 (He3 + 0,82 MeV) + (n1 + 2,45 MeV) • D2 + D2 (T3 + 1,01 MeV) + (H1 + 3,03 MeV) • D2 + T3 (He4 + 3,52 MeV) + (n + 14,06 MeV) • D2 + He3 (He4 + 3,67 MeV) + (H1 + 14,67MeV)
Tokamaks Aparelho queconsegue suportar essas temperaturas mantendo um delgado filete de plasma, longe das paredes, durante um curto intervalo de tempo e usando a técnica do confinamento magnético.
Fissão nuclear quebra ou divisão de um núcleo atômico, instável e pesado, através de um bombardeamento do núcleo com nêutrons lentos; Poucos átomos podem sofrer o processo de fissão nuclear, entre eles, o urânio-235 e o plutônio; A energia obtida através da fissão nuclear é devida à transformação da matéria em energia; Geração de energia elétrica em países como Japão, França, USA, China, Brasil e outros; Fissão: Uma breve introdução
Fusão Nuclear x Fissão Nuclear Desvantagens • Não se consegue controlar a fusão de um modo eficaz; • Ocorre em temperaturas elevadíssimas (milhões de graus centígrados). • É necessário o confinamento dos núcleos por pelo menos um segundo (câmaras magnéticas em formato toroidal “tokamak”; Vantagens • O processo mais limpo que a fissão usa núcleos atômicos leves (Trítio e Deutério, isótopos do Hidrogênio); • Os lixos radioativos possuem vidas curtas; • A quantidade de energia liberada é muito maior na fusão que na fissão;
Condição necessária para a sustentabilidade da reação: O número de núcleos que capturam nêutrons e sofrem fissão tem de ser, em média, igual ao dos nêutrons resultantes desses processos que vão ser depois capturados e induzir fissão Consequentemente: o factor de multiplicação (razão entre on número de nêutrons de uma geração e o correspondente número da geração seguinte) deve ser UM Reação em cadeia / Sustentabilidade
Reação em cadeia / Sustentabilidade História (cíclica) de 100 nêutrons numa reação em cadeia 100 nêutrons lentos são capturados por U235 a causam fissão • Resultam 200 nêutrons • 40 escapam durante a termalização • 20 são capturados pelo U238 durante a termalização 140 que atingem velocidades baixas (lentos/térmicos 2200 m/s) • 10 escapam como nêutrons lentos ou térmicos 130 nêutrons disponíveis para absorção térmica: • 30 são absorvidos (moderador, U238, contaminantes, etc.) • 100 nêutrons lentos são capturados por U235 a causam fissão
O “ciclo” do combustível nuclear • Converte-se o óxido de urânio num gás,o UF6, hexafluoreto de U. • Separação por difusão e/ou centrifugação permite ENRIQUECER a parcela de isótopo 235 até aos 3 - 4% (maior eficiência; possibilita moderação dos nêutrons com água) • O UF6 é de novo convertido em UO2 e formam-se as “pellets” que são introduzidas em tubos metálicos que vão constituir as “barras de combustível” do núcleo do reator. • Uma vez consumido o combustível, as barras são removidas para re-processamento ou para armazenamento de médio ou longo prazo.
Controle da Fissão nos Reatores A reação acontece dentro de varetas que compõem o elemento combustível. Dentro dele há também barras de controle - feitas de material que absorve nêutrons, controlando o processo.Quando as barras "entram totalmente" no elemento combustível, o reator pára; quando saem, ele é ativado.
Num reator nuclear, a reação em cadeia é controlada com o uso de barras de substâncias moderadoras, como, por exemplo, a grafite. Urânio enriquecido 3% a 4%. • Reação não controlada Explosão. • Bomba Atômica • Urânio enriquecido 90%.
Energia nuclear e o aquecimento global Das fontes mais utilizadas de energia, apenas três não contribuem com a emissão de gases que causam o efeito estufa: Eólica Solar Nuclear
Energia eólica:como o vento não pode ser represado, é uma energia imprevisível, vulnerável a oscilações climáticas; • Energia solar:necessita de grandes extensões para a produção de pouca energia, e só faz sentido em locais com forte incidência de luz solar; • Energia nuclear:Com controle rígido dos reatores, a energia atômica e ecológica já é uma realidade
Energia Liberada A fissão completa de 1kg de 235U libera aproximadamente 8 x 1013 joules, suficiente para ferver 270 milhões de litros de água.
O Lado Ruim Em Chernobyl, em 1986, reator explodiu durante operação de manutenção dos equipamentos da usina.
O Lado Ruim Bomba A- 1945
Um Grande Problema O LIXO ATÔMICO
Medindo a Radioatividade A radiação entra no tubo e produz ionização das moléculas gasosas, gerando uma corrente elétrica, cuja intensidade é registrada. Contador de Geiger-Müller
(*)mrem = 1/1000 remrem é uma unidade de dose de radiação ionizante que produz o mesmo efeito biológico de uma unidade de dose de raios-X Alimentos: 25 mrem(*) por ano A Radioatividade do Cotidiano
Radiografia dentária: 20 mrem cada A Radioatividade do Cotidiano Energia solar: 11 mrem por ano
A Radioatividade do Cotidiano Área num raio de 1 km de uma usina nuclear: 5 mrem por ano
Irradiação e Contaminação Irradiação é a exposição de um objeto ou um corpo à radiação, o que pode ocorrer à distância, sem necessidade de contato. Irradiar não significa contaminar.
Irradiação e Contaminação Contaminação, radioativa ou não, caracteriza-se pela presença indesejável de um material em local onde não deveria estar. No caso de materiais radioativos, a contaminação gera irradiações. Para descontaminar um local, retira-se o material contaminante. IRRADIAÇÃO NÃO CONTAMINA, MAS CONTAMINAÇÃO IRRADIA.
Por que a radiação provoca danos biológicos? Quando exposta à radiação a molécula de água, presente no líquido puro ou fazendo parte dos tecidos vivos, absorve energia e forma radicais livres.
Aplicações da Radioatividade Alimentos Irradiados
Aplicações da Radioatividade Radioterapia
Aplicações da Radioatividade Datação radioativa