1 / 47

Quantum control using diabatic and adibatic transitions

Quantum control using diabatic and adibatic transitions. Diego A. Wisniacki. University of Buenos Aires. Colaboradores-Referencias. Colaborators. Gustavo Murgida (UBA) Pablo Tamborenea (UBA). Short version ---> PRL 07, cond-mat/0703192 APS ICCMSE. Outline. Introduction

idola-carr
Download Presentation

Quantum control using diabatic and adibatic transitions

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Quantum control using diabatic and adibatic transitions Diego A. Wisniacki University of Buenos Aires

  2. Colaboradores-Referencias Colaborators • Gustavo Murgida (UBA) • Pablo Tamborenea (UBA) • Short version ---> PRL 07, cond-mat/0703192 • APS ICCMSE

  3. Outline • Introduction • The system:quasi-one-dimensional quantum dot with 2 e inside • Landau- Zener transitions in our system • The method: traveling in the spectra • Results • Final Remarks

  4. Introduction Desired state

  5. Introduction • Main idea of our work To travel in the spectra of eigenenergies Control parameter

  6. Introduction • To navigate the spectra

  7. Introduction • To navigate the spectra

  8. Introduction • To navigate the spectra

  9. Introduction • To navigate the spectra

  10. The system Quasi-one-dimensional quantum dot: filled with 2 e Confining potential: doble quantum well

  11. Colaboradores-Referencias The system The Hamiltonian of the system: Time dependent electric field Coulombian interaction Note: no spin term-we assume total spin wavefunction: singlet

  12. The system Interaction induce chaos PRE 01 Fendrik, Sanchez,Tamborenea System: 1 well, 2 e Nearest neighbor spacing distribution

  13. Colaboradores-Referencias The system • We solve numerically the time independent Schroeringer eq. • Electric field is considered as a parameter • Characteristics of the spectrum (eigenfunctions and eigenvalues)

  14. The system Spectra • lines • Avoided crossings

  15. Colaboradores-Referencias The system Cero slope delocalized Negative slope e¯ in the left dot Positive slope e¯ in the right dot

  16. Landau-Zener transitions in our model LZ model hyperbolas Linear functions

  17. Landau-Zener transitions in our model LZ model if Probability to remain in the state 1 Probability to jump to the state 2

  18. Landau-Zener transitions in our model LZ model Adibatic transitions Diabatic transitions

  19. Colaboradores-Referencias Landau-Zener transitions in our model We study the prob. transition in several ac. For example: Full system LZ prediction 2 level system E(t)

  20. Colaboradores-Referencias Landau-Zener transitions in our model We study the prob. transition in several ac. For example: 2 level system Full system

  21. The method: navigating the spectrum • Choose the initial state and the desired final state in the spectra • Find a path in the spectra • Avoid adiabatic transitions in very small avoided crossings • We use adiabatic and rapid transitions to travel in the spectra • If it is posible try to make slow variations of the parameter

  22. Results • First example: localization of the e¯ in the left dot EPL 01 Tamborenea, Metiu (sudden switch method) LL

  23. Results • First example: localization of the e¯ in the left dot EPL 01 Tamborenea, Metiu (sudden switch method)

  24. Colaboradores-Referencias Results • Second example: complex path

  25. Colaboradores-Referencias Results • Second example: complex path

  26. Colaboradores-Referencias Results • Second example: complex path

  27. Colaboradores-Referencias Results • Second example: complex path

  28. Colaboradores-Referencias Results • Second example: complex path

  29. Colaboradores-Referencias Results • Second example: complex path

  30. Colaboradores-Referencias Results • Second example: complex path

  31. Colaboradores-Referencias Results • Second example: complex path

  32. Colaboradores-Referencias Results • Second example: complex path

  33. Colaboradores-Referencias Results • Second example: complex path

  34. Colaboradores-Referencias Results • Second example: complex path

  35. Colaboradores-Referencias Results • Third example:more complex path

  36. Results

  37. Colaboradores-Referencias Results • Forth example:target state a coherent superposition

  38. Colaboradores-Referencias Results • Forth example:target state a coherent superposition

  39. Colaboradores-Referencias Results • Forth example:target state a coherent superposition

  40. Colaboradores-Referencias Results • Forth example:target state a coherent superposition

  41. Colaboradores-Referencias Results • Forth example:target state a coherent superposition

  42. Colaboradores-Referencias Results • Forth example:target state a coherent superposition

  43. Colaboradores-Referencias Results • Forth example:target state a coherent superposition

  44. Colaboradores-Referencias Results • Forth example:target state a coherent superposition

  45. Colaboradores-Referencias The method: questions • Is our method generic? We need well defined avoided crossings Stadium billiard LZ transitions Sanchez, Vergini DW PRE 96 a/R • Is our method experimentally possible?

  46. Colaboradores-Referencias Final Remarks • We found a method to control quantum systems • Our method works well: • With our method it is posible to travel in the spectra of the system • We can control several aspects of the wave function • (localization of the e¯, etc).

  47. Colaboradores-Referencias Final Remarks • We can also obtain a combination of adiabatic states • Control of chaotic systems • Decoherence??? Next step???.

More Related