1 / 32

Quark Matter 2005, Budapest

Quark Matter 2005, Budapest. Jet and Leading Hadron Production. Xin-Nian Wang Lawrence Berkeley National Laboratory. Asymptotic Freedom and QCD. David J. Gross H. David Politzer Frank Wilczek Nobel Prize in Physics 2004. Asymptotic freedom Scale anomaly Phase transition.

idra
Download Presentation

Quark Matter 2005, Budapest

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Quark Matter 2005, Budapest Jet and Leading Hadron Production Xin-Nian Wang Lawrence Berkeley National Laboratory

  2. Asymptotic Freedom and QCD David J. Gross H. David Politzer Frank Wilczek Nobel Prize in Physics 2004 • Asymptotic freedom • Scale anomaly • Phase transition

  3. Hard processes in heavy-ion collisions pQCD leading particle q q H. Zhang,J. Owens, E. Wang XNW, in preparation leading particle

  4. Before the Beginning…

  5. Single Spectra Suppression ET PHENIX XNW and M. Gyulassy Phys. Rev. Lett. 68, 1480 (1992)

  6. Non-suppression in p+A PHENIX XNW, Phys. Rev. C 61, 064910 (2000) [hep-ph/9812021]

  7. Azimuthal Anisotropy STAR XNWPhys. Rev. C 63, 054902 (2001) Gyulassy, Vitev & XNW Phys. Rev. Lett. 86, 2537 (2001)

  8. Suppression of Back-side Correlation Pedestal&flow subtracted STAR, Phys. Rev. Lett. 90, 082302 (2003)

  9. Modified Fragmentation DGLAP-like Guo & XNW’00

  10. Parton Energy Loss and QGP Gluon density correlation: LPM interference BDPM; Gyulassy Vitev Levai Wang & XNW; Wiedemann; Zakharov

  11. pQCD Analysis of Jet Quenching Parton distr. in nuclei & pT broadening Modified Frag. Fun. E. Wang & XNW (2002), XNW (2004) Gyulassy, Levai & Vitev (2002) Eskola, Honkanen, Salgado & Wiedemann (2005) Q. Wang & XNW (2005) Turbide, Gale, Jeon & Moore (2005) Dainese, Loizides & Paic (2005) …

  12. Jet Quenching at RHIC XNW, PLB595(04)165. LO analysis,

  13. Energy Dependence of Jet Quenching D. d’Enterria, Hard Probes 2004 XNW, PLB579(2004)299 63 GeV

  14. Effect of non-Abelian energy loss Eskola Honkanen Salgado Wiedemann Q. Wang & XNW nucl-th/0410079 pT=6 GeV DEg=DEq DEg=2DEq q=0.9 0.1 Effects in heavy/light hadron ratio– Armesto, parallel 3c

  15. Nuclear Size Dependence

  16. Sensitivity of RAA • Cronin effect • Slope of the jet • spectra • E-dependence of • the energy loss Gyulassy & Vitev Eskola,Honkanen Salgado,Wiedemann

  17. Back-2-back Dihadron Correlations  = STAR preliminary Pedestal&flow subtracted Majestero ET XNW, PLB595(04)165.

  18. Modified Dihadron Fragmentation h1 h1 h2 h2 h1 h1 h2 h2 jet Majumder & XNW’04,05 Majumder, parallel 3b

  19. Modified Dihadron Fragmentation Triggering h1 D(z1,z2)/D(z1) Pedestal&flow subtracted E. Wang & XNW, PRL89 (2002) 162301 Hermes Preliminary Majumder & XNW nucl-th/0412061 Majumder, parallel 3b

  20. Soft hadrons rings qM PHENIX Shock wave? Stoecker’04 Casalderrey-Solana,Shuryak & Teaney ‘04 Casalderrey-Solana (parallel 3b)

  21. LPM & Angular Correlation Multiple Scattering in QCD Formation time Radiation in vacuum

  22. LPM & Cherenkov-like Bremsstrahlung Dielectric constant Majumder & XNW nuth-0507063 J. Ruppert & B. Muller PLB619(2005)123. Dremin, JETP(1979), hep-ph/0507167 Dremin (parallel 10a)

  23. Resonances in QGP above Tc? F. Karsch & Laermann ‘03 J/Y survives at T=1.6-2 Tc Could there be other resonances? Shuryak & Zahed ‘04 Asakawa &Hatsuda ’04 S. Datta, et al ‘04 Lee, Mocsy (parallel 10c); Mannarelli, Petreczky (parallel 7a)

  24. Dielectric Constant in QGP f f1 f f2 Koch, Majumder & XNW’05 See Majumder (parallel 3b) Strong p-dependence Cherenkov angle

  25. Future of Jet Quenching I g-jet Events XNW, Huang & Sarcevic,PRL77(96)231 • No-trigger bias • Initial energy • Surface emission • Correlation background due to v2

  26. Future of Jet Quenching II • Heavy quark jet quenching • Djordjevic, Rapp, Teaney (parallel 5b) • B. Zhang (parallel 5a) • Parton recombination at intermediate pt • Ko (parallel 2b), Hwa (parallel 3a), E. Wang (parallel 3c) • 3D jet tomography • Adil (parallel 3a) • Incorporate dynamic evolution of bulk matter

  27. Summary • Discovery of Jet Quenching at RHIC proves that a interacting dense matter is formed: Opaque to jets • Dense matter at RHIC is 30 times higher than cold nuclei, energy density is 100 times higher • Jet tomography a useful and power tool for studying properties of dense matter • Heavy quarks, dihadron correlation, angular distribution, flavor dependence … • Soft hadron correlation  Cherenkov radiation dielectric property of the QGP at RHIC

  28. Back-up I

  29. Jet Quenching Tomography Df

More Related