1 / 8

Contoh 1:

Contoh 1: Pembangkit polynomial suatu sandi siklis (7,4) adalah g(x) = x 3 + x 2 +1. Carilah kata sandi dari vektor data d=(1 1 1 0) dengan sandi siklis non sistematis , menggunakan c(x)=d(x) g(x) Penyelesaian :

iorwen
Download Presentation

Contoh 1:

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Contoh 1: Pembangkit polynomial suatusandisiklis (7,4) adalah g(x) = x3 + x2 +1. Carilahkatasandidarivektor data d=(1 1 1 0) dengansandisiklis non sistematis, menggunakan c(x)=d(x) g(x) Penyelesaian : jikasandi yang dibentuk non sistematis, yaitudenganmembentuksandidengan c(x_=d(x) g(x) dengan d(x) adalah polynomial pesan. Makauntukvektor data d=(d1,d2,d3,d4)=(1110) polynomial sandinyaadalah : c(x) = (d(x) g(x) = (x3 + x2 + x (x3 + x2 + 1) = x6 + (1+1)x5 + (1+1)x4 + (1+1)x3 +x2 + x : koefadalahoperasi XOR = X6 + X2 +X = X6 + (0) X5 + (0) X4 + (0) X3 + X2 + X + 0 Mengahasilkanvektorsandic=(10000110)

  2. >> d=[1 1 1 0] • d = • 1 1 1 0 • >> g=[1 1 0 1] • g = • 1 1 0 1 >> c=conv (d , g ) • c = • 1 2 2 2 1 1 0 >> kode = mod ( c , 2 ) % hasilpengkodean • kode = • 1 0 0 0 1 1 0

  3. n=7 ; k=4 ; d= [0 1 1 1]% untuksektor data d=1110 code = encode( d, n , k, ‘cyclic’)

  4. d = • 0 1 1 1 • code = • 0 • 1 • 0 • 0 • 1 • 1 • 1

  5. Catatan : untukmengetahui generator pembangkitsiklis (7,4) >> g =cyclpoly ( 7, 4) g = 1 0 1 1 >> gfpretty (g) 1 + x2 + x3

  6. Tugas : • Pembangkitpolinomialsuatusandisiklis (7,4) adalah g(x) = x3+ x2 + 1 (g=1101). Carilahkatasandidarivektor data d1=(1111), d2= (1110), d3= (1101), d4= (1100), d5= (1011), d6= (1010), d7= (1001), d8= (1000), d9= (0111), d10= (0110), d11= (0101), d12= (0100), d13= (0011), d14= (0010), d15= (0001).

  7. Pembangkitpolinomialsuatusandisiklis ( 7,4 ) adalah g(x) = x3+ x2 + 1. carilahkatasansidari vektor data d1=(1111), d2=(1110), d3=(1101), d4=(1100), d5=(1011), d6=(1010), d7=(1001), d8=(1000), d9=(0111), d10=(0110), d11=(0101), d12=(1100), d13=(0011), d14=(0010), d15=(0001), d16=(0000). dengansandisiklissistematis.

More Related