1 / 27

The evaluation and optimisation of multiresolution FFT Parameters

The evaluation and optimisation of multiresolution FFT Parameters. For use in automatic music transcription algorithms. Automatic music transcription (AMT). AMT Algorithms. Time & Frequency Resolution. Short Window. Time Resolution Increases Frequency Resolution Decreases. Long Window.

ita
Download Presentation

The evaluation and optimisation of multiresolution FFT Parameters

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. The evaluation and optimisationof multiresolution FFT Parameters For use in automatic music transcription algorithms

  2. Automatic music transcription (AMT)

  3. AMT Algorithms

  4. Time & Frequency Resolution Short Window Time Resolution Increases Frequency Resolution Decreases Long Window Time Resolution Decreases Frequency Resolution Increases

  5. Multiresolution FFT (MRFFT) High Time Resolution High Frequency Resolution FFT A FFT B FFT C FFT D FcA FcC FcB FcD

  6. Time Freq Plane - Dressler

  7. Window Length - Bin Alignment • Note-bin alignment – The position of a fundamental frequency relative to a FFT bin frequency.

  8. Note bin alignment

  9. Note bin alignment

  10. MRFFT Optimisation • Cut off frequencies • Subband FFT Length • Optimised based on 3 characteristics determined by window length • Time Resolution • Frequency Resolution • Note Bin Alignment

  11. Scoring • Calculate score for time, freq, and note-bin alignment in each subband • Weight score according to notes in subband • Range correct score to be between 0 and 1 • Sum all scores across all bands to generate MRFFT Score

  12. Note Bin Scoring Weighted Sub-band FFT Bin Score = Sub-band FFT Bin Score * (notes in sub-band/total notes across all bands) If 2 note frequencies fall within same bin, FFT length is discounted as unsuitable

  13. Scoring Process • The algorithm moves the cut off frequencies A, B and C through all combinations of positions. For each position, all FFT lengths between 256 and 8192 samples in increments of 128 are evaluated on each sub-band. All combinations of FFT lengths on all combinations of subbands are evaluated and scored. Subband B Subband A Subband C Subband D 80 Hz 5KHz FcA FcB FcC FcD

  14. Solutions 1. 4 band MRFFT 256-8192 range 3 band MRFFT 256-8192 range Dressler 4 band MRFFT 256-2048 range Dressler fixed FFT Length variable bands 256-2048 range 4 band MRFFT 256-2048 range 1 band FFT 8192

  15. Band A Results – Subband Divisions Band B Band C Band D

  16. Results – MRFFT Score

  17. Transcription Test – Low F Bands Original Solution 6 FcA FcB High F Resolution of solution 6 is reflected in Low frequency transcription accuracy Solution 1

  18. Transcription Test – High F Bands Solution 1 Solution 6 Solution 3

  19. F-Measure Results Recall refers to the fraction of the relevant notes that were retrieved i.e. how many of the correct notes the system extracted. Precision refers to the fraction of relevant notes retrieved, relative to the total number retrieved. I.e. how many of the extracted notes that were correct. F-Measure is the weighted mean of precision and recall.

  20. Peak Picker • A threshold is dynamically set for each analysis window of the STFT as a percentage of the maximum magnitude within the window, with a minimum threshold heuristically decided. If a bin magnitude exceeds the threshold a note is transcribed at that point.

  21. Peak Picker Robustness

  22. Solution 1 Vs Solution 6 Picker

  23. MRFFT Implementation 6016 FFT is performed on the entire frequency spectrum. The spectral information is then filtered to include only the frequencies required by that band. note frequency (orange magnitude) not in the frequency band considered, generates cross channel interference (red magnitudes) that contributes to the magnitudes in the sub-band of interest.

  24. Cross talk indicators

  25. Adjacent bins • Adjacent bins in optimised MRFFT represent fundamental frequencies. Therefore any cross channel interference will contribute to energy contained in FFT bins representing note frequencies. • This may contribute to false positives.

  26. F Measure conclusions • The results of the F-Measure are largely disappointing, and can be attributed to the inadequacies of the implemented peak picker to handle fluctuations in magnitude of local maxima. Characteristics of the MRFFT, like adjacent note representing bins, and interference generated by sub-band division methods contribute to this problem. • Large variations of spectral magnitudes also contribute

  27. Conclusions • The theoretical scoring of MRFFT parameters resulted in favourable results for the optimised FFT. • The ‘real world’ sinusoidal extraction test demonstrated initially disappointing F-Measure results for the MRFFT solutions compared to the single band 8192 FFT. However, upon closer analysis of the transcribed files, positive aspects of the MRFFT analysis were found as performance improved in the higher frequencies. • Further investigation of the results revealed inadequacies of the peak picker implemented and also indicated issues with the construction of the MRFFT that require further investigation.

More Related