1 / 10

FFT Exploration and Optimization

FFT Exploration and Optimization. Stages. Divide and Conquer Rules. Cooley- Tukey Good-Thomas Rader. Rule Application. At each state a transition function is applied to produce a new program based on the following rules for a DFT of size n

betty
Download Presentation

FFT Exploration and Optimization

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. FFT Exploration and Optimization

  2. Stages

  3. Divide and Conquer Rules • Cooley-Tukey • Good-Thomas • Rader

  4. Rule Application • At each state a transition function is applied to produce a new program based on the following rules for a DFT of size n • If n = mk and gcd(m,k) = 1 apply Good-Thomas • If n=mk apply Cooley-Tukey • If n is prime apply Raders

  5. Example DFT 32 (define F4 (compose (tensor F2 (I 2) ) (T 4 2) (tensor (I 2) F2 ) (L 4 2) ) ) (define F8 (compose (tensor F2 (I 4) ) (T 8 4) (tensor (I 2) F4 ) (L 8 2) ) ) (define F16 (compose (tensor F2 (I 8) ) (T 16 8) (tensor (I 2) F8 ) (L 16 2) ) ) (define F32 (compose (tensor F16 (I 2) ) (T 32 2) (tensor (I 16) F2 ) (L 32 16) ) ) (F32) Different permutations of the same rules (define F4 (compose (tensor F2 (I 2) ) (T 4 2) (tensor (I 2) F2 ) (L 4 2) ) ) (define F8 (compose (tensor F4 (I 2) ) (T 8 2) (tensor (I 4) F2 ) (L 8 4) ) ) (define F16 (compose (tensor F2 (I 8) ) (T 16 8) (tensor (I 2) F8 ) (L 16 2) ) ) (define F32 (compose (tensor F16 (I 2) ) (T 32 2) (tensor (I 16) F2 ) (L 32 16) ) ) (F32) Different derivation (define F4 (compose (tensor F2 (I 2) ) (T 4 2) (tensor (I 2) F2 ) (L 4 2) ) ) (define F8 (compose (tensor F4 (I 2) ) (T 8 2) (tensor (I 4) F2 ) (L 8 4) ) ) (define F16 (compose (tensor F8 (I 2) ) (T 16 2) (tensor (I 8) F2 ) (L 16 8) ) ) (define F32 (compose (tensor F8 (I 4) ) (T 32 4) (tensor (I 8) F4 ) (L 32 8) ) ) (F32)

  6. Example DFT 35 (define F3 (compose (RI 3) (tensor (I 1) F2 ) (E 3) (tensor (I 1) F2 ) (R 3) ) ) (define F4 (compose (tensor F2 (I 2) ) (T 4 2) (tensor (I 2) F2 ) (L 4 2) ) ) (define F5 (compose (RI 5) (tensor (I 1) F4 ) (E 5) (tensor (I 1) F4 ) (R 5) ) ) (define F6 (compose (PI 6 3 2) (tensor F3 (I 2) ) (tensor (I 3) F2 ) (P 6 3 2) ) ) (define F7 (compose (RI 7) (tensor (I 1) F6 ) (E 7) (tensor (I 1) F6 ) (R 7) ) ) (define F35 (compose (PI 35 7 5) (tensor F7 (I 5) ) (tensor (I 7) F5 ) (P 35 7 5) ) ) (F35) Different permutations of the same rules (define F3 (compose (RI 3) (tensor (I 1) F2 ) (E 3) (tensor (I 1) F2 ) (R 3) ) ) (define F4 (compose (tensor F2 (I 2) ) (T 4 2) (tensor (I 2) F2 ) (L 4 2) ) ) (define F5 (compose (RI 5) (tensor (I 1) F4 ) (E 5) (tensor (I 1) F4 ) (R 5) ) ) (define F6 (compose (PI 6 2 3) (tensor F2 (I 3) ) (tensor (I 2) F3 ) (P 6 2 3) ) ) (define F7 (compose (RI 7) (tensor (I 1) F6 ) (E 7) (tensor (I 1) F6 ) (R 7) ) ) (define F35 (compose (PI 35 7 5) (tensor F7 (I 5) ) (tensor (I 7) F5 ) (P 35 7 5) ) ) (F35)

  7. Icode Generation • Separate front end generates un optimized Icode • Uses templates to perform generation (template (F 2) [0 == 0] ( $out(0) = $in(0) + $in(1) $out(1) = $in(0) - $in(1) ) ) ;; T(m, n) (template (T m_ n_) [0 == 0] ( do $i0 = 0,m_-0 $r0 = $i0 $out(0) = W(m_,n_,$r0) * $in(0) end ) ) ;; L(m,n) (template (L m_ n_) [n_ != 0] ( $r0 = m_ / n_ do $i0 = 0,n_-0 do $i1 = 0,$r0-0 $out($r0 1) = $in(1 n_) end end ) )

  8. ICode Compiler • Converts program to SSA • Folds Constants • Propagates Copies • Removes Dead Code • Performs Common Sub expression Elimination ? • Outputs C

  9. C Code Example

  10. Timings

More Related