340 likes | 558 Views
UPC. Universidad Peruana de Ciencias Aplicadas Cálculo Diferencial e Integral de Una Variable Ciclo 2007 - 2. Tasas relacionadas. Identifica los tipos de problemas sobre tasas relacionadas. Resuelve problemas de tasas. H a bilidades. Lea con cuidado el problema.
E N D
UPC Universidad Peruana de Ciencias Aplicadas Cálculo Diferencial e Integral de Una Variable Ciclo 2007 - 2 Tasas relacionadas
Identifica los tipos de problemas sobre tasas relacionadas. • Resuelve problemas de tasas. Habilidades
Lea con cuidado el problema. • Trace si es posible, un diagrama. • Adopte una notación. Asigne símbolos a todas las cantidades que sean funciones del tiempo. • Exprese la información dada y la tasa requerida en términos de derivadas. • Deduzca una ecuación que relacione las diversas cantidades del problema. Si es necesario, use la geometría del caso que se ve, para eliminar una de las variables por sustitución. • Utilice la regla de la cadena para derivar ambos lados de la ecuación, con respecto al tiempo. • Sustituya la información dada en la ecuación resultante y despeje la rapidez o tasa desconocida. Estrategia
Una escalera de 10 pies de longitud se apoya en un muro vertical. Si su extremo inferior se desliza alejándose de la pared con una velocidad de 2 pies/s, ¿Con qué velocidad se mueve el extremo superior de la escalera en el momento en que se halla a 6 pies del piso? Ejemplo 1
Una escalera de 10 pies de longitud se apoya en un muro vertical. Si su extremo inferior se desliza alejándose de la pared con una velocidad de 2 pies/s, ¿Con qué velocidad se mueve el extremo superior de la escalera en el momento en que se halla a 6 pies del piso? Ejemplo 1
Una escalera de 10 pies de longitud se apoya en un muro vertical. Si su extremo inferior se desliza alejándose de la pared con una velocidad de 2 pies/s, ¿Con qué velocidad se mueve el extremo superior de la escalera en el momento en que se halla a 6 pies del piso? Ejemplo 1
Una escalera de 10 pies de longitud se apoya en un muro vertical. Si su extremo inferior se desliza alejándose de la pared con una velocidad de 2 pies/s, ¿Con qué velocidad se mueve el extremo superior de la escalera en el momento en que se halla a 6 pies del piso? Ejemplo 1
Una escalera de 10 pies de longitud se apoya en un muro vertical. Si su extremo inferior se desliza alejándose de la pared con una velocidad de 2 pies/s, ¿Con qué velocidad se mueve el extremo superior de la escalera en el momento en que se halla a 6 pies del piso? Ejemplo 1
Una escalera de 10 pies de longitud se apoya en un muro vertical. Si su extremo inferior se desliza alejándose de la pared con una velocidad de 2 pies/s, ¿Con qué velocidad se mueve el extremo superior de la escalera en el momento en que se halla a 6 pies del piso? Ejemplo 1
Una escalera de 10 pies de longitud se apoya en un muro vertical. Si su extremo inferior se desliza alejándose de la pared con una velocidad de 2 pies/s, ¿Con qué velocidad se mueve el extremo superior de la escalera en el momento en que se halla a 6 pies del piso? Ejemplo 1
Una escalera de 10 pies de longitud se apoya en un muro vertical. Si su extremo inferior se desliza alejándose de la pared con una velocidad de 2 pies/s, ¿Con qué velocidad se mueve el extremo superior de la escalera en el momento en que se halla a 6 pies del piso? Ejemplo 1
Una escalera de 10 pies de longitud se apoya en un muro vertical. Si su extremo inferior se desliza alejándose de la pared con una velocidad de 2 pies/s, ¿Con qué velocidad se mueve el extremo superior de la escalera en el momento en que se halla a 6 pies del piso? Ejemplo 1
Una escalera de 10 pies de longitud se apoya en un muro vertical. Si su extremo inferior se desliza alejándose de la pared con una velocidad de 2 pies/s, ¿Con qué velocidad se mueve el extremo superior de la escalera en el momento en que se halla a 6 pies del piso? Ejemplo 1
12 m A B A mediodía el barco A está a 150 km al oeste del barco B. La embarcación A navega hacia el este a 35 km/h y B hacia el norte a 25 km/h. ¿Con qué velocidad cambia la distancia entre ambos a las 4 pm.? Ejemplo 2
A B A mediodía el barco A está a 150 km al oeste del barco B. La embarcación A navega hacia el este a 35 km/h y B hacia el norte a 25 km/h. ¿Con qué velocidad cambia la distancia entre ambos a las 4 pm.? Ejemplo 2 1 pm.
A B A mediodía el barco A está a 150 km al oeste del barco B. La embarcación A navega hacia el este a 35 km/h y B hacia el norte a 25 km/h. ¿Con qué velocidad cambia la distancia entre ambos a las 4 pm.? Ejemplo 2 2 pm.
A B A mediodía el barco A está a 150 km al oeste del barco B. La embarcación A navega hacia el este a 35 km/h y B hacia el norte a 25 km/h. ¿Con qué velocidad cambia la distancia entre ambos a las 4 pm.? Ejemplo 2 3 pm.
B A mediodía el barco A está a 150 km al oeste del barco B. La embarcación A navega hacia el este a 35 km/h y B hacia el norte a 25 km/h. ¿Con qué velocidad cambia la distancia entre ambos a las 4 pm.? Ejemplo 2 4 p.m. A
Un reflector en el piso alumbra un muro a 12 m de distancia. Si un hombre de 2 m de altura camina del reflector hacia el muro a una velocidad de 1,6 m/s, ¿con qué velocidad disminuye la altura de su sombra en el muro cuando está a 4 m de la pared? Ejemplo 3
Un reflector en el piso alumbra un muro a 12 m de distancia. Si un hombre de 2 m de altura camina del reflector hacia el muro a una velocidad de 1,6 m/s, ¿con qué velocidad disminuye la altura de su sombra en el muro cuando está a 4 m de la pared? Ejemplo 3
Una lancha es remolcada hacia un muelle con una cuerda atada a su proa que pasa por una polea en el muelle. Esta polea está 1 m mas alta que la proa del bote. Si la cuerda se desliza con una velocidad de 1 m/s, ¿con qué velocidad se acerca la lancha al muelle cuando está a 8 m de distancia de él? Ejemplo 4
Una lancha es remolcada hacia un muelle con una cuerda atada a su proa que pasa por una polea en el muelle. Esta polea está 1 m mas alta que la proa del bote. Si la cuerda se desliza con una velocidad de 1 m/s, ¿con qué velocidad se acerca la lancha al muelle cuando está a 8 m de distancia de él? Ejemplo 4
Un canal tiene 10 pies de largo y sus extremos presentan la forma de triángulo isósceles de 3 pies de ancho y 1 pie de altura. Si el canal se llena de agua con un flujo de 12 pies cúbicos por minuto, ¿con qué velocidad cambia el nivel del agua cuando hay 6 pulgadas de profundidad? Ejemplo 5
Cuando el aire se expande adiabáticamente (sin ganar ni perder calor), su presión P y su volumen V se relacionan mediante la ecuación: Ejemplo 6 donde C es una constante. En cierto instante el volumen es 400 cm3 y la presión 80 kPa y disminuye a 10 kPa/min. ¿Con qué velocidad aumenta el volumen en ese momento?
P Un faro se encuentra en una isleta a 3 km del punto mas cercano, P, de una costa recta y su linterna gira a 4 rpm. ¿Con qué velocidad el haz luminoso barre la costa cuando pasa por un punto a 1 km de P? Ejemplo 7
Un faro se encuentra en una isleta a 3 km del punto mas cercano, P, de una costa recta y su linterna gira a 4 rpm. ¿Con qué velocidad el haz luminoso barre la costa cuando pasa por un punto a 1 km de P? Ejemplo 7 P
Un faro se encuentra en una isleta a 3 km del punto mas cercano, P, de una costa recta y su linterna gira a 4 rpm. ¿Con qué velocidad el haz luminoso barre la costa cuando pasa por un punto a 1 km de P? Ejemplo 7 P
Un faro se encuentra en una isleta a 3 km del punto mas cercano, P, de una costa recta y su linterna gira a 4 rpm. ¿Con qué velocidad el haz luminoso barre la costa cuando pasa por un punto a 1 km de P? Ejemplo 7 P
Un faro se encuentra en una isleta a 3 km del punto mas cercano, P, de una costa recta y su linterna gira a 4 rpm. ¿Con qué velocidad el haz luminoso barre la costa cuando pasa por un punto a 1 km de P? Ejemplo 7 P
Un faro se encuentra en una isleta a 3 km del punto mas cercano, P, de una costa recta y su linterna gira a 4 rpm. ¿Con qué velocidad el haz luminoso barre la costa cuando pasa por un punto a 1 km de P? Ejemplo 7 P
Un faro se encuentra en una isleta a 3 km del punto mas cercano, P, de una costa recta y su linterna gira a 4 rpm. ¿Con qué velocidad el haz luminoso barre la costa cuando pasa por un punto a 1 km de P? Ejemplo 7 P
NE E Dos personas parten del mismo punto. Una camina hacia el este a 3 mi/h y la otra hacia el noreste a 2 mi/h. ¿Con qué velocidad cambia la distancia entre ellas después de 15 minutos? Ejemplo 8
Dos personas parten del mismo punto. Una camina hacia el este a 3 mi/h y la otra hacia el noreste a 2 mi/h. ¿Con qué velocidad cambia la distancia entre ellas después de 15 minutos? Ejemplo 8 NE E
Bibliografía “Cálculo de una variable” Cuarta edición James Stewart Sección 3.10 Ejercicios 3.10 pág 257: 2, 3, 4, 5, 7, 8, 10, 11, 15, 17, 18, 20, 21, 24, 26,29, 31, 32, 33.