1 / 50

Análisis Económico y Ambiental

Análisis Económico y Ambiental. Dr. Oscar Alfredo Jaramillo Salgado Centro de Investigación en Energía. Universidad Nacional Autónoma de México ojs@cie.unam.mx 1 de Dic. 2011. Electricidad Solar Térmica:. 2% of arid and semi-arid areas are enough to supply annual World demand of electricity.

jacqueline
Download Presentation

Análisis Económico y Ambiental

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Análisis Económico y Ambiental Dr. Oscar Alfredo Jaramillo Salgado Centro de Investigación en Energía. Universidad Nacional Autónoma de México ojs@cie.unam.mx1 de Dic. 2011

  2. Electricidad Solar Térmica: 2% of arid and semi-arid areas are enough to supply annual World demand of electricity Source: WorldEnergy Council Balance global de energía Sólo por ofrecer un orden de magnitud PrimaryEnergy: • Theenergycontent of theannual solar radiationwhichreachestheearth and itsatmosphereis 2,895,000 EJ, • The total non-renewableenergyresources of 325,300 EJ (oil, 8,690 EJ (20 times); gas, 17,280 EJ (40 times); uranium, 114000 EJ (250 times); coal, 185 330 EJ (400 times)). • Theenergycontent of othermajorrenewablesisestimated as 1960 EJ (4 times) (hydro, 90 EJ; wind, 630 EJ; photosyntheticstorage/ biomass, 1 260 EJ), • Currentworldprimaryenergyconsumptionisabout 425 EJ/yr. • So the total amount of energy irradiated from thesun to the earth’s surface is enough to

  3. Clatrato de metano en plena combustión. OilShale. Esquistos bituminosos

  4. 40 N 35 S El 70% de la población del planeta vive dentro de la denominada “Franja Solar”.

  5. Illustration of the distribution of energy use on the planet. (Courtesy of C. Mayhew and R. Simmon and NASA/GSFC archive.)

  6. Electricidad Solar Térmica: 2% of arid and semi-arid areas are enough to supply annual World demand of electricity PrimaryEnergy: • Theenergycontent of theannual solar radiationwhichreachestheearth and itsatmosphereis 2,895,000 EJ, • The total non-renewableenergyresources of 325,300 EJ (oil, 8,690 EJ (20 times); gas, 17,280 EJ (40 times); uranium, 114000 EJ (250 times); coal, 185 330 EJ (400 times)). • Theenergycontent of othermajorrenewablesisestimated a 1960 EJ (4 times) (hydro, 90 EJ; wind, 630 EJ; photosyntheticstorage/ biomass, 260 EJ), • Currentworldprimaryenergyconsumptionisabout 425 • So the total amount of energy irradiated from thesun to the earth’s surface is enough to

  7. Taza de utilización de la energía per cápita

  8. Explosión demográfica

  9. La función de penetración de mercado En 1846, PierreFrankcoisVerhulst propuso una formulación matemática plausible del crecimiento demográfico conocida ahora como laecuación deVerhulst. Esta ecuación es unpunto departidaexcelentepara entender el problema de la substitución tecnológica, es decir, la cuestión de cómo una tecnología más avanzada substituirá a una tecnología más vieja.

  10. Como un ejercicio de propositico, Marchetti usa las líneas de tendencia de la Figura 1.8, obtenida sólo de los datos de 1935, y calcula el comportamiento de la cuota del mercado del petróleo empleando la formula:

  11. Los resultados se muestran en la Figura 1.9. Son muy exactos y llevó a Marchettia comentar: “podríamos predecir lacuota demercado fraccionaria delpetróleo en los E.E.U.U. hasta 1970 con una precisión deuno por ciento.”

  12. Si extendemos el gráfico de Marchetti a 2008, encontramos un buen acuerdo del comportamiento del carbón y del gas, en las cuales se basa el pronóstico, pero el modelo no es muy bueno para los tiempos modernos (véase Figura 1.10)

  13. Si durante el período de la penetración del mercado, existe un aumento substancial en capital disponible, éstealterará elíndice de penetración, aunque puede no aumentarlo beneficioso de laempresa. Sería de gran valor si fuera posibleestimar cuántose aceleraría la penetración en función de una cantidad de inversión dada en el nuevo mercado. Desafortunadamente, esto no es todavía posible. La formulación antedicha implicaque cuando unatecnología comienza a penetrar el mercado, el mercado debe ya estarbien desarrolladoy su grado de madurez determinará el índice de penetración eventualmente. Así, “la magnitud de la inversión externa originaldetermina realmente lascondiciones iniciales para el modelo” (Peterka, 1977).Las reglas de la penetración de mercado discutidas en esta subsección proporcionan una herramientade gran alcancepara el planeamiento, pero se deben utilizar con mucha precaución y con mucha atención a las suposiciones implícitas.

  14. La utilización de la energía

  15. Emisiones de Carbón

  16. Costo Nivelado de Producción de Electricidad

  17. Perspectivas de Mercado CSP cost reduction objective 0.18 Subsidized Introductory Markets Green Power Markets Initial Competetive Markets Sustained Global Markets 0.16 Feed-in Tariffs 0.12 EURO/kWh GEF & Preferred Financing 0.08 Green Pricing Competitive Price Range for Grid- Connected Intermediate Load Power 0.04 0.00 2005 2010 2015 2020 Year 2025

  18. Tres vías a la reducción de costos • Escalamiento • Volumen de producción • Investigación y desarrollo EURO/kWh

  19. Tecnología de los Helióstatos 450 €/m2 250 €/m2 140 €/m2 1980 1985 2000 Asinel (65 m2) • El funcionamiento de la estructura de metal-vidrio es robusta y estable. Se han reducido los costos de fabricación hasta 140€/m2. CASA (39 m2) INABENSA (91 m2)

  20. investment breakdown contingencies 17% investment land 2% investment storage investment solar field 8% 51% investment power block, BOP 22% Cost distribution and main figures of the 50 MWe parabolic trough reference plant using oil as HTF and 3h thermal storage (~Andasol)

  21. Impact of innovations on LEC for solar-only operation of a parabolic trough plant with HTF and 3h thermal storage (full load from 9a.m. – 11p.m.) (~Andasol) • Combination of selected measures: • Multilayer plastics and innovative structures • Dust repellent mirrors • Tubeless concrete storage with advanced charging/discharging • Increased maximum HTF temperature • Reduced parasitics

  22. contingencies 17% investment land 2% investment storage investment 0% solar field investment 64% power block, BOP 17% Cost distribution and main figures of the 50 Mwe parabolic trough reference plant using water/steam as HTF and 3h thermal storage (~DSG)

  23. Impact of innovations on LEC for solar-only operation of a parabolic trough plant using water/steam as HTF and thermal storage (full load from 9a.m. – 11p.m.) (~DSG) • Combination of selected measures: • Front surface mirrors • Dust repellent mirrors • advanced concrete storage • Increased field outlet temperature • Reduced parasitics

  24. Cumulative cost reduction of parabolic trough DSG Systems compared to parabolic trough with oil reference system

  25. indirect costs 17% investment land 2% investment storage investment 3% solar field 36% investment tower 3% investment receiver 15% investment power block 24% Cost distribution and main figures of the CRS reference plant with molten salt and 3h thermal storage (~Solar TRES)

  26. Impact of innovations on LEC for solar-only operation of a CRS with molten salt and 3h thermal storage (full load from 9a.m. – 11p.m.) (~Solar TRES) • Combination of selected measures: • Scale-up of the module size • Large area heliostat • Thermocline storage • Dust repellent mirrors

  27. investment breakdown indirect costs 17% investment land 2% investment investment solar field storage 38% 4% investment tower 5% investment receiver 14% investment power block 20% Cost distribution and main figures of a 50 MWe CRS plant with saturated steam and 3h thermal storage (~PS10)

  28. Impact of innovations on LEC for solar-only operation of a 50 MWe CRS plant with saturated steam and 3h thermal storage (full load from 9a.m. – 11p.m.) (~PS10) • Combination of selected measures: • Dust repellent mirrors • Large area heliostats • Advanced storage • Scale-up of the module size • Change to superheated steam

  29. indirect costs 17% investment investment land solar field 2% 35% investment storage 13% investment tower 5% investment power investment block receiver 15% 13% Cost distribution and main figures of the 50 MWe CRS using Atmospheric Air and 3h thermal storage (~Phoebus-TSA &SOLAIR)

  30. Impact of innovations on LEC for solar-only operation of a 50 MWe CRS using Atmospheric Air and 3h thermal storage (full load from 9a.m. – 11p.m.) (~Phoebus-TSA &SOLAIR) • Combination of selected measures: • Dust repellent mirrors • Large area heliostats • Storage with mobile solid material • Scale-up of the module size • Improved receiver performance

  31. indirect costs 17% investment investment land solar field 3% 22% investment storage 0% investment tower 8% investment receiver investment 11% power block 39% Cost distribution and main figures of the 50 MWe CRS using pressurized air hybrid turbine (~REFOS/SOLGATE/SOLHYCO)

  32. Impact of innovations on CRS using pressurized air in combination with a solar hybrid gas-turbine(3-h storage, full load from 9 a.m. to 11 p.m.). (~REFOS/SOLGATE/SOLHYCO) • Combination of selected measures: • Large area heliostats • Dust repellent mirrors • Increased module size • Thermal storage integration

  33. indirect costs 17% investment land 1% investment investment solar field storage 38% 0% investment receiver 7% investment power block 37% Cost distribution and main figures of the 50 MWe dish-Stirling farm (Dish-Stirling) Stirling Engine & Generator Concentrated Sunlight Solar Receiver & Combustor Parabolic Dish Concentrator

  34. Impact of innovations on solar LEC for the dish/engine system (full load from 9 a.m. to 11 p.m.). No storage (Dish-Stirling)

  35. 50% optimistic cost reduction estimation pessimistic cost reduction estimation 40% 30% relative cost reduction 20% 10% 0% Dish engine Trough DSG CRS molten salt Trough with HTF CRS atmospheric air CRS saturated steam CRS pressurized air / solar Summary of relative cost reduction for 7 CSP Innovation driven cost reduction potential for the 7 CSP technologies investigated in this study based on the LEC for the 50 MWe reference system and assuming a combination of selected innovations for each system.

  36. Las acciones que tomemos o dejemos de hacer, a partir de ahora, determinarán nuestra capacidad para satisfacer los requerimientos energéticos en los próximos años. Nuestro Compromiso, Nuestros Hijos CENTRO DE INVESTIGACIÓN EN ENERGÍA www.cie.unam.mx

More Related