300 likes | 447 Views
Thermal Engines for Launch Vehicle Configurations. Agenda. What is propulsion Thermal engine basics LOX Augmented Thermal Engines Launch Vehicle Dynamics SSTO/MSTO. Propulsion. Propulsion is energy. Energy and momentum are related. more energy = more propulsion. Energy Sources.
E N D
Thermal Engines for Launch Vehicle Configurations HYPERION ERAU
Agenda • What is propulsion • Thermal engine basics • LOX Augmented Thermal Engines • Launch Vehicle Dynamics • SSTO/MSTO HYPERION ERAU
Propulsion Propulsion is energy Energy and momentum are related more energy = more propulsion HYPERION ERAU
Energy Sources HYPERION ERAU
Thermal Engines • Produce heat to expand a propellant • Requires core materials to withstand high melting points (~2000-4000 K) such as Tungsten and Carbon • Propellant must have a high Cp and low atomic weight. Liquid Hydrogen is a primary candidate HYPERION ERAU
Specific Impulse HYPERION ERAU
Thrust HYPERION ERAU
Nuclear Thermal Rocketry (NTR) • Heavily tested • Must use a combination • of W, LiH, Be • Radiation and spallation • Limited by material melting • point HYPERION ERAU
Positron Thermal Rocket (PTR) • Identical to NTR • Uses positrons as a heat source • Concentric cylinder configuration • Requires only Tungsten, allowing higher core temp. and Isp HYPERION ERAU
LOX Augmentation Increases thrust Decreases Isp HYPERION ERAU
LOX Augmentation • - Based on NTR NERVA configuration • Assumes that PTR is scaled to NTR NERVA specs. • More advanced PBR could increase T/W by X7 HYPERION ERAU
LOX Augmentation HYPERION ERAU
LOX Augmentation HYPERION ERAU
LOX Augmentation HYPERION ERAU
LOX Augmentation HYPERION ERAU
Launch Vehicle HYPERION ERAU
Launch Vehicle Requirements HYPERION ERAU
Single Stage to Orbit (SSTO) • Simple • Quick turnaround time • Short loiter time in orbit • Small payloads delivered HYPERION ERAU
SSTO HYPERION ERAU
SSTO HYPERION ERAU
Multistage Rocketry (MSTO) • Assume all 1st stage engines are Saturn F-1’s Isp: 330 seconds T/W: 96 • Upper-stage chemical engines are SSME’s Isp; 450 seconds T/W: 73 HYPERION ERAU
MSTO Assumptions HYPERION ERAU
MSTO HYPERION ERAU
MSTO HYPERION ERAU
MSTO HYPERION ERAU
MSTO HYPERION ERAU
MSTO HYPERION ERAU
Future Work • Validate Altitude equation • Consider using a PBR analysis • Use Mars transfer analysis for baseline PTR configuration • Use more precise computer model to demonstrate changes in D, alpha, gamma, etc… • Determine launch cost to include H2, O2, etc… HYPERION ERAU
References • Blevins, J., Patton, B., Ryhs, N., Schmidt, G., Limitations of Nuclear Propulsion for Earth to Orbit, AIAA Paper 2001-3515 • Smith, D., Wulff, J., Pearce, C., Bingaman, J., Webb, J., Thermal Radiation Studies for an Electron Positron Annihilation Propulsion System, AIAA Paper 2005-3230 • Humble, R., Henry, G., Wiley, J., Space Propulsion Analysis and Design, McGraw Hills Co. Inc. 1995 • Smith, G., Kramer, K., Meyer, K., Thode, T., High Density Storage of Antimatter for Space Propulsion Application, AIAA Paper 2001-3230 • Borowski, S., Dudzinski, L., 2001 A Space Odyssey Revisited – The Feasibility of 24 Hour Commuter Flights to the Moon Using NTR Propulsion with LUNOX Afterburners, published with permission from NASA, AIAA Paper 97-2956 • Bulman, M., Messit, D., Niel, T., Borowski, S., High Area Ratio LOX-Augmented Nuclear Thermal Rocket (LANTR) Testing, AIAA Paper 2001-3369 HYPERION ERAU
Questions/Comments • ????? HYPERION ERAU