200 likes | 297 Views
Fuming Liu Sergej Ostapchenko Tanguy Pierog Klaus Werner. hep-ph/0007198 Physics Reports 350 (2001) 93-289 hep-ph/0102194 Phys. Rev. Lett. 86 (2001) 3506. Hajo Drescher Michael Hladik. Joerg Aichelin Marcus Bleicher. SUBATECH , Nantes. Strange Particles from NE X US 3.
E N D
Fuming Liu Sergej Ostapchenko Tanguy Pierog Klaus Werner hep-ph/0007198 Physics Reports 350 (2001) 93-289 hep-ph/0102194 Phys. Rev. Lett. 86 (2001) 3506 Hajo Drescher Michael Hladik Joerg Aichelin Marcus Bleicher SUBATECH, Nantes Strange Particles from NEXUS 3 (Basic ideas, baryon production in pp) NEXUS 3 : Consistent treatment of multiple scattering
Problems with the String Model Approach Particle production in pp scattering via string fragmentation Strings decay into chains of hadrons pp ==> 2 strings Not enough multiplicity fluctuations ==>
Two Pairs of strings In general: n pairs of strings
2 / 2 Probability of n pairs ? Gribov Regge : Pomeron (= pair of strings) ...
String model -- Gribov-Regge String model: first and subsequent pairs are of different nature Gribov-Regge: all Pomerons are identical String model: energy-momentum is properly shared among strings Gribov-Regge: energy-sharing is not considered inconsistent
And …traditional string models fail badlywhen it comes to strange baryon production in pp ...
The new approach Aim: connecting properly string model and Gribov-Regge Theory … and the parton model Extending work by Gribov, Kaidalov, Capella ...
Basic Features Result of a pp collisions: 2 remnants and n Pomerons (all identical) Pomeron = 2 strings Energy-momentum properly shared Same formalism for particle production and probability calculations
Notations Consider parton-parton scattering
Amplitude: Squared amplitude => interference terms: Inelastic scattering in pp: remnant => Symbolic notation
(Elastic and inelastic elem. Interactions) Inelastic scattering in AB: Squaring amplitude sum over many interference terms expressed via cut and uncut elementary diagrams full energy conservation!! remnant Pomerons: multiplicity proportional to number of binary collisions Remnants: multiplicity proportional to participants
Pomeron-Pomeron Interactions • Diffraction • Screening • Shadowing • Saturation • Increasing mult. fluctuations • Solving F2-tot puzzle
Hadronization Multiple scattering theory determines how many Pomerons are involved in each nucleon-nucleon interaction and the momenta of each Pomeron. Then: Pomeron strings Strings hadrons
From Pomerons to Strings In the multiple scattering theory a dashed line represents a cut Pomeron The complicated hadronic structure is “hidden” What is the precise structure of a cut Pomeron? Pomeron = 2 strings
pp scattering: 1 Pomeron 2 Pomerons etc Projectile remnant q, q-bar or qq qq-bar (sea quarks) strings Target remnant Crucial: separation of Pomerons and remnants otherwise completely wrong baryon yields (FM Liu, M Bleicher, J Aichelin, T. Pierog, KW et al)
Baryon ratios in pp at 158 GeV 3 Traditional string models NEXUS: < 1
Antibaryon/baryon ratios at RHIC (pp -1<y<1):NEXUS 3.97 STAR data (FM Liu, T.Pierog) (A.Billmeier):Proton: 0.834 +- 0.003 (0.81 +- ) Lambda: 0.950 +- 0.005 (0.89 +- 0.03)Xi: 0.98 +- 0.02 (0.97 +- 0.04) Omega: 0.99 +- 0.08 (0.90 +- 0.19)
Why does the conventional string model give more antiomegas than omegas? A string end flavor u or d prevents the production of omegas NEXUS : projectile/target flavor is in the remnants not in the strings
Baryon spectra in pp at 158 GeV Leading particles (mainly from remnants) Theory: NEXUS (FM Liu et al) Data: NA49
Summary Consistent multiple scattering formalism => separation remnants - Pomerons (strings) => antibaryon/baryon ratios R < 1 contrary to conventional string models strings: R = 1 remnants: R < 1