520 likes | 664 Views
Dane informacyjne. Grupa 1: Zespół Szkół Technicznych w Ostrowie Wielkopolskim ID grupy: 97/83_MF_G1 Grupa 2 Zespół Szkół Ponadgimnazjalnych ID grupy: 97/53_MF_G1 Kompetencja: matematyczno-fizyczna Temat projektowy: Zasady zachowania się ciał Semestr/rok szkolny: V/ 2011- 201 2.
E N D
Dane informacyjne • Grupa 1: • Zespół Szkół Technicznych w Ostrowie Wielkopolskim • ID grupy: 97/83_MF_G1 • Grupa 2 • Zespół Szkół Ponadgimnazjalnych • ID grupy: 97/53_MF_G1 • Kompetencja: matematyczno-fizyczna • Temat projektowy: Zasady zachowania się ciał • Semestr/rok szkolny: V/ 2011-2012
Cele projektu • Rozwój wiedzy ZAKRES: warunki równowagi bryły sztywnej, zasada zachowania pędu, momentu pędu, energia kinetyczna ruchu postępowego i obrotowego, energia potencjalna. • Rozwój umiejętności ZAKRES: obserwacja i opis zjawisk fizycznych, wyszukiwanie informacji, przekształcanie wzorów, wszelkie działania matematyczne w fizyce, planowanie i przeprowadzanie doświadczeń fizycznych, wyciąganie wniosków, stosowanie swojej wiedzy w praktyce, posługiwanie się pojęciami fizycznymi. • Rozwój postaw ZAKRES: współtworzenie, współpraca i kierowanie grupą, rozdzielanie zadań, prowadzenie dyskusji, argumentowanie, poszanowanie praw autorskich, kompromis, weryfikacja wiedzy, szacunek do pracy innych, planowanie działań, wybieranie metody ich realizacji, bycie twórczym i kreatywnym.
co z tymi zasadami.... • Zasady zachowania stosują się do wszystkich obiektów, dużych i małych, do gwiazd i atomów. Zasadom podlegają zjawiska zachodzące na Ziemi i w dowolnym miejscu Wszechświata, niezależnie od ich natury. • W trakcie projektu sprawdziliśmy różne zasady zachowania, pracując głową, ale też własnymi rękami ;)
Zagadnienia teoretyczne Siła, pęd, energia, masa... Zasada zachowania energii Zasada zachowania pędu Zasada zachowania momentu pędu Zasada zachowania masy Energia w bryle sztywnej
SIŁA – podnoszenie, pchanie lub ciągnięcie powodujące zmianę ruchu dowolnego obiektu; zgodnie z drugą zasadą dynamiki Newtona siła jest proporcjonalna do przyspieszenia, jakie powoduje PĘD – iloczyn masy i prędkości, który wyraża, jak trudno jest zatrzymać coś, co się porusza ENERGIA – właściwość związana z potencjałem zmian; jako suma zachowana, jednak może się zmieniać z jednej formy w inną MASA – właściwość równoważna liczbie atomów lub ilości energii, zawartych w danym obiekcie
Zasada zachowania energii • Zasada zachowania energii jako zasada fizyczna, mówi, że całkowita ilość energii pozostaje niezmieniona, ale może przybierać różnorodne formy. Energia zmienia się z jednego typu w inny i nie znika ani nie bierze się znikąd.
Zasada zachowania pędu • Przyrost pędu ciała jest równy iloczynowi działającej na to ciało siły i czasu jej działania • Jeśli na ciało nie działa żadna siła, czyli Fw=0, to Δp=0, czyli pęd ciała nie ulega zmianie.
Zasada zachowania momentu pędu • Moment pędu obiektu, obracającego się dookoła punktu to iloczyn jego pędu i odległości, o jaką jest oddalony od punktu wokół którego się obraca. Im mniejsza odległość punktów od osi obrotu, tym większa prędkość wirowania.
Zasada zachowania masy • Masa ciała i układu ciał nie zmienia się podczas przemian i oddziaływań fizycznych, a masa układu jest sumą mas ciał wchodzących w jego skład (addytywność masy).
Doświadczenie 1 Cel: Wyznaczanie momentu bezwładności koła Maxwella, korzystając z zasady zachowania energii. Efekt jojo. Potrzebne przedmioty: koło Maxwella, dwie nici, stoper Etapy doświadczenia: • Koło Maxwella osadzone jest na osi. • Do obu końców tej osi przywiązane są dwie nici, na których wisi koło. • Nawijamy nici na oba końce osi, po czym uwalniamy koło.
Doświadczenie 1 • Wyznaczamy masę koła, wysokość, z której spada rozwijając się z nici, promień osi, na którą nawinięta jest nić. • Mierzymy czas opadania koła i wyznaczamy prędkość liniową środka koła oraz prędkość kątową, korzystając z odpowiednich zależności.
Doświadczenie 1 • Obserwacje: • W chwili początkowej sznurki są nawinięte na ośkę koła. Uwolnione koło zaczyna opadać, wirując równocześnie wokół osi. Po dojściu do najniższego położenia koła zaczyna „wspinać” się do góry. Szybkość wirowania stopniowo zmniejsza się do zera. Koło osiąga położenie początkowe, zatrzymuje się i teraz następuje drugi cykl ruchu, podobny do poprzedniego.
Doświadczenie 1 • Wnioski: • W chwili początkowej koło posiadało energię potencjalną grawitacji. W miarę jak opadało w dół, energia ta malała, a wzrastała energia kinetyczna ruchu obrotowego. • W najniższym położeniu koło najszybciej się obraca – energia potencjalna została zamieniona całkowicie na energię kinetyczną ruchu obrotowego. • W miarę wspinania się koła do góry wzrasta jego energia potencjalna, natomiast maleje energia kinetyczna ruchu obrotowego. Koło coraz wolniej wiruje.
Doświadczenie 2 Cel: Poszukiwanie warunku równowagi dźwigni dwustronnej • Na statywie mocujemy dźwignię w taki sposób, by miała możliwość obrotu wokół poziomej osi. • Sprawdzamy, czy nieobciążona dźwignia ustawia się poziomo; jeśli nie, korygujemy ustawienie. • W odległości r1= 6cm zawieszamy dwa odważniki, czyli po lewej stronie działa siła o wartości F1= 1 N (ciężar jednego odważnika ma wartość 0,5 N)
Doświadczenie 2 • Jeden odważnik zawieszamy po prawej stronie osi w takiej odległości r2, by doprowadzić do zrównoważenia dźwigni. Wartość r1, r2, F1, F2 zapisujemy w tabeli, a następnie obliczamy i zapisujemy wartości iloczynów r1 x F1 oraz r2 x F2 • Wykonujemy kilka pomiarów, zmieniając każdorazowo położenie i liczbę ciężarków na listwie. Wzory, których użyliśmy do obliczeń:F1/F2=r2/r1 oraz jego przekształcenia
Doświadczenie 2 • Obserwacje i wnioski: • Analizując wyniki doświadczenia, stwierdziliśmy, że dźwignia dwustronna jest w równowadze, gdy iloczyn długości lewego ramienia i wartości ciężaru zawieszonych na nim odważników (F1) jest równy iloczynowi długości prawego ramienia i wartości ciężaru zawieszonych na nim odważników F2.
Doświadczenie 3 Cel: Sprawdzenie zasady zachowania pędu Przedmioty: deskorolka, stoper, metrówka, waga Przebieg doświadczenia: • Deskorolkę kładziemy w danej odległości od człowieka. • Mierzymy odległość między człowiekiem, a deskorolką przed wskoczeniem człowieka na pojazd i po tym, jak już na nim jedzie. • Mierzymy czas dobiegnięcia człowieka do deskorolki i czas, w którym na niej jedzie.
Doświadczenie 3 • Obliczamy prędkość człowieka w dwóch przypadkach. • Ważymy deskorolkę i określamy masę człowieka. • Sprawdzamy słuszność zasady zachowania pędu. • Rozpatrzymy punkty trzykrotnie.
Doświadczenie 3 • Legenda:s- odległość początkowa człowieka od deskorolki • s1- odległość, którą pokonuje człowiek jadąc na deskorolce • t- czas, w którym człowiek dobiega do deskorolki • t1- czas jechania człowieka na deskorolce • v- prędkość dobiegnięcia człowieka do pojazdu • v1- prędkość jechania człowieka na pojeździe
Doświadczenie 3 • Przypadek I • v = s/t v1 = s1/t1 • v = 6m/2,47s v1 = 4,3m/2,28s • v = 2,43 m/s v1 =1,89 m/s • p1 + p2 = p3 • mczv + mdvd = (mcz + md)v1 • 62 x 2,43 + 0 = (1,2 + 62) x 1,89 • 150,66 = 119,45Należy wziąć pod uwagę niepewności pomiarowe.
Doświadczenie 3 • Przypadek II • v = 6m/3,4s = 1,76 m/s • v1 = 1,93m/1,53s = 1,26 m/s • 62 x 1,76 + 0 = (62 + 1,2) x 1,26 • 109,12 = 79,63 • Przypadek III • v = 6m/3,45s = 1,74 m/s • v1 = 1,2m/1,12s = 1,07 m/s • 62 x 1,74 + 0 = 1,07 x 63,2 • 107,88 = 67,62
Doświadczenie 4 • Miarą bezwładności w ruchu obrotowym jest moment bezwładności Znaczenie tego pojęcia możemy sprawdzić w następującym doświadczeniu - obrót na krześle z hantlami. Przyrządy i materiały - dwa ciężkie, łatwe do utrzymania obiekty np. hantle - krzesło obrotowe.
Przebieg doświadczenia Doświadczenie można wykonać siedząc na krześle, a sprawniejsi mogą spróbować zrobić piruet bez pomocy krzesła, Rozpoczynamy od tego, że mając ciężarki w rekach, druga osoba rozpędza nas. Powoli zbliżamy hantle do siebie (ostrożnie i symetrycznie, aby się nie przewrócić). Ponieważ przy zbliżeniu hantli maleje moment bezwładności układu względem osi obrotu - prędkość kątowa rośnie (yIy=const, gdzie Iyjest momentem bezwładności względem osi obrotu y, yjest prędkością kątową). Oddalamy hantle - prędkość kątowa maleje. Powtarzamy to kilka razy, ale nie więcej niż dwa do trzech, ponieważ ze względu na istnienie momentu sił zewnętrznych (moment sił tarcia w łożyskach) moment pędu powoli maleje. Siły którymi działamy zbliżając i oddalając hantle są siłami wewnętrznymi i suma ich momentów jest równa zeru. Wnioski : • ze złożonymi rekami mamy mały moment bezwładności, • prędkość obrotowa, jest wyraźnie większa, • iloczyn momentu bezwładności i prędkości obrotowej jest w tym przypadku stały: • Jest to zatem wielkość zachowywana w ruchu obrotowym.
Zadanie 1 • Obliczamy energię potencjalną 1 m³ wody o masie m= 1000kg w zbiorniku górnym elektrowni Porąbka - Żar, który znajduje się 430 metrów powyżej zbiornika dolnego. • Dane: Szukane: • m= 1000kg Ep= ? • h= 430 m • Rozwiązanie: • Ep= mgh • Ep= 1000kg * 10m/s2* 430 m • Ep= 4300000J= 4,3 MJ
Zadanie 2 • Obliczamy energię potencjalną szklanki o masie m= 0,1 kg, stojącej na półce na wysokości • h2= 0,5 m nad stołem. Blat stołu znajduję się na wysokości h1= 1m nad podłogą. Na poziom zerowy przyjmijmy: • a) podłogę • b) stół • c) półkę
Zadanie 2 • Dane: Szukane: • m= 0,1kg, h1= 1m Ep= ? • h2= 0,5 m, h3= 0m • Rozwiązanie: • a) Ep1= mg(h1+h2) • Ep1= 0,1 kg* 10m/s2*1,5m= 1,5 J • b) Ep2=mgh2 • Ep2= 0,1kg*10 m/s2*0,5m= 0,5 J • c) Ep3= mgh3 • Ep3= m*g*0= 0
Zadanie 3 • Człowiek poruszający się z prędkością 15m/s wskoczył na nieruchomo położoną deskorolkę. Wiedząc, że masa deskorolki wynosi 6kg, a człowieka 52 kg. Oblicz prędkość człowieka jadącego na deskorolce. • Dane: Szukane: • V1= 15m/s V3= ? • m1= 52kg • m2= 6kg • Rozwiązanie: • m1V1 +m2 = V3(m1+m2) • 52 * 15 + 6 * 0= V3(52 + 6) • 780 = 58V3 • V3= 13,4m/s
Zadanie 4 • Oblicz pracę, jaką wykona dźwig budowlany, której ruchem jednostajnym podnosi cegły o masie 1000kg na wysokości h= 20m, a następnie przesuwa je poziomo na odległość s= 10m. Oba ruchy są jednostajne. • Dane: Szukane: • s= 10m W=? • m=1000kg • h=20m • F=mg • F= 1000 kg* 10m/s2 • F= 10 000 N • W= Fh • W=10 000N * 20m • W= 200 000J • Kierunek przesunięcia jest prostopadły do kierunku siły podczas poziomego przesuwania cegieł więc dźwig nie wykonuje pracy.
Zadanie 5 • Do wbijania w ziemi pali mocujących wielkie konstrukcje stosuje się kafar. Jego istotną częścią jest ciężki bijak, zwany babą, którego masa sięga nawet kilku ton. Spadając na pal, wykonuje pracę. Bijak kafara podniesiono na pewną wysokość, wykonując przy tym pracę W= 1 500 000J. O ile wyniosła energia bijaka ? Jaką pracę może wykonać ten bijak, wracając do stanu początkowego (spadając) ? Oblicz wartość siły, którą bijak działa na pal, wciskając go na głębokość 0,2m. • Dane: Szukane: • W= 1 500 000J F= ? • s= 0,2m • W= Fs • 1 500 000J= 0,2m*F • F= 7 500 000 N= 7,5 MN
Zadanie 6 • Kula bilardowa poruszająca się z szybkością 0,8 m/s uderza w spoczywającą identyczną kulę i zatrzymuje się.Z jaką szybkością będzie poruszać się po zderzeniu druga kula? Zakładamy, że kule mają identyczną masę, czyli: Zgodnie z zasadą zachowania pędu, pęd dwóch kul przed uderzeniem musi się równać pędowi kul po uderzeniu.
ZADANIE 6 c.d. • Przed uderzeniem pęd drugiej kuli był równy zero: Z kolei po uderzeniu pierwsza kula miała pęd zerowy: Zgodnie z zasadą zachowania pędu obliczamy: Odp. Druga kula po zderzeniu osiągnie prędkość 0,8 m/s.
Albert Einstein Przeszedł na świat 14 marca 1879 r. w Ulm w Niemczech, a zamarł 18 kwietnia 1955 r. w Princeton w USA – jeden z największych fizyków XX wieku, twórca ogólnej i szczególnej teorii względności, współtwórca korpuskularno-falowej teorii światła, odkrywca emisji wymuszonej. Laureat Nagrody Nobla w dziedzinie fizyki w 1921 roku za wyjaśnienie efektu fotoelektrycznego. Opublikował ponad 450 prac, w tym ponad 300 naukowychWniósł też swój wkład do rozwoju filozofii nauki. 25 listopada 1915 r. Einstein opublikował swoją najważniejszą pracę: ogólną teorię względności. Jest ona uogólnieniem poprzedniej teorii, opisuje również ruch z przyspieszeniem. Stwierdza równoważność grawitacji i przyspieszenia oraz opisuje różnice między geometrią euklidesową a geometria silnych polach grawitacyjnych. Teoria względności przewiduje znacznie silniejsze niż w teorii Newtona odchylenie toru światła przechodzącego obok gwiazdy.
W 1919 r. podczas zaćmienia Słońca zespół Arthura Stanleya Eddingtona dokonał pomiaru odchylenia toru światła pochodzącego z gwiazdy znajdującej się za Słońcem i przechodzącego obok niego. Wynik potwierdził teorię Einsteina. W czasie I wojny światowej oprócz ogólnej teorii względności, Einstein opublikował prace na temat kosmologii i fal grawitacyjnych, znalazł nowe wyprowadzenie prawa Plancka, napisał pięćdziesiąt artykułów naukowych i wydał książkę popularyzującą teorię względności.
Ciekawostki… 1. Albert Einstein przez większość swego życia był wegetarianinem, chociaż czasem robił w diecie wyjątki. W ostatnim roku swojego życia Einstein aktywnie propagował wegetarianizm. 2. Kiedy opuścił Niemcy w 1933 roku, naziści wyznaczyli nagrodę za jego głowę 20000 marek. 3. Opublikował ponad 450 prac, w tym ponad 300 naukowych. 4. W testamencie wszystkie swoje listy, rękopisy i prawa autorskie przekazał Uniwersytetowi Hebrajskiemu. 5. Mózg Einsteina ważył 1230 g, czyli mniej niż średnia waga mózgu mężczyzny. 6. Einstein uważał, że jego najlepsze pomysły przychodziły mu podczas porannego golenia. 7. Podobno nie nosił skarpet. Nie znalazłem na to potwierdzenia, ale też i niczego co twierdziło by, że ów skarpety nosił. 8. Słynie z cytatu: „Nie wiem jaka broń zostanie użyta w trzeciej wojnie światowej, ale czwarta będzie na maczugi.” 9. Podobno nie nosił skarpet...