1 / 76

Advanced Topics in Asynchronous Circuit Design: Hazard-Free Logic Decomposition and Technology Mapping

Explore intricate concepts in asynchronous circuit design, from hazard-free logic decomposition to advanced technology mapping. Learn about relative timing, automatic timing assumptions, state graph encoding, and more. Dive deep into Boolean minimization, gate netlists, and specification using STGs.

jenniferj
Download Presentation

Advanced Topics in Asynchronous Circuit Design: Hazard-Free Logic Decomposition and Technology Mapping

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Introduction toasynchronous circuit design: specification and synthesis Part III: Advanced topics on synthesis of control circuits from STGs

  2. Outline • Logic decomposition • Hazard-free decomposition • Signal insertion • Technology mapping • Optimization based on timing information • Relative timing • Timing assumptions and constraints • Automatic generation of timing assumptions

  3. Specification(STG) Reachability analysis State Graph State encoding SG withCSC Design flow Boolean minimization Next-state functions Logic decomposition Decomposed functions Technology mapping Gate netlist

  4. No Hazards abcx 1000 b+ 1 1 0 0 a 1100 x 1 1 0 1 0 b a- c 0 0 0 1 0100 c+ 0110

  5. abcx 1000 1 0 b+ a z 0 0 1100 b x c a- 0 0100 1 0 0 1 0 1 1 0 1 0 c+ 1 1 1 1 1 0 0 0 1 0 0110 0 0 0 1 1 Decomposition May Lead to Hazards 1000 1100 1100 0100 0110

  6. Decomposition • Acknowledgement • Global acknowledgement • Generating candidates • Hazard-free signal insertion • Event insertion • Signal insertion

  7. d- b+ d+ y+ a- y- c+ d- c- d+ z- b- z+ c+ a+ c- c z b a a y b d Global acknowledgement

  8. d- b+ d+ y+ a- y- c+ d- c- d+ z- b- z+ c+ a+ c- c z b a a y b d How about 2-input gates ?

  9. d- b+ d+ y+ a- y- c+ d- c- d+ z- b- z+ c+ a+ c- How about 2-input gates ? c z b a a y b d

  10. d- b+ d+ y+ a- y- c+ d- c- d+ z- b- z+ c+ a+ c- How about 2-input gates ? 0 c 0 z b a a y b d

  11. d- b+ d+ y+ a- y- c+ d- c- d+ z- b- z+ c+ a+ c- How about 2-input gates ? c z b a a y b d

  12. d- b+ d+ y+ a- y- c+ d- c- d+ z- b- z+ c+ a+ c- a b How about 2-input gates ? c z y d

  13. Strategy for logic decomposition • Each decomposition defines a new internal signal • Method: Insert new internal signals such that • After resynthesis, some large gates are decomposed • The new specification is hazard-free • Generate candidates for decomposition using standard logic factorization techniques: • Algebraic factorization • Boolean factorization (boolean relations)

  14. y- y- 1001 1011 z- w- 1000 0001 w+ y+ w- z- x+ z- w- w+ 1010 0000 0101 0011 w- y+ x+ z- y+ x+ x- 0010 0100 x- x+ y+ z+ 0110 0111 z+ Decomposition example

  15. x y- y w 1001 1011 z z- w- y 1000 0001 w+ z y+ x w- z- x+ w 1010 0000 0101 0011 w w- y+ x+ z- C z y z 0010 0100 x- x+ y+ y z+ C 0110 0111 x z y yz=0 yz=1 y- 1001 1011 z- w- 1000 0001 w+ y+ w- z- x+ 1010 0000 0101 0011 w- y+ x+ z- 0010 0100 x- x+ y+ z+ 0110 0111

  16. x w y z x w w C z y z y C x z y s=1 y- s 1001 1011 z- s- w+ 1001 1000 z- s- y+ w- 0011 1000 0001 1010 y+ s- w- z- x+ x- 1010 0000 0101 w- y+ x+ z- 0111 0010 0100 s+ x+ y+ s=0 z+ 0111 0110

  17. s=1 y- y- 1001 1011 z- s- s- w+ 1001 1000 z- s- y+ w- z- w- w+ 0011 1000 0001 1010 y+ s- w- z- x+ x- 1010 0000 0101 y+ x+ x- w- y+ x+ z- 0111 0010 0100 s+ s+ x+ y+ z+ s=0 z+ 0111 0110

  18. x 1001 y- y w 1001 1011 z z- w- y 1000 0001 w+ z y+ x w- z- x+ w 1010 0000 0101 0011 w w- y+ x+ z- C z y z 0010 0100 x- x+ y+ y z+ C 0110 0111 x z y y- 1011 z- w- 1000 0001 w+ y+ w- z- x+ 1010 0000 0101 0011 w- y+ x+ z- 0010 0100 x- x+ y+ z+ 0110 0111 yz=0 yz=1

  19. y- y- s=1 1001 1011 s- s- w+ 1001 z- w- 0011 1000 0001 z- w- w+ y+ w- z- x+ x- 1010 0000 0101 w- y+ x+ z- y+ x+ x- 0111 0010 0100 s+ x+ y+ s+ s=0 z+ z+ 0111 0110 z- is delayed by the new transition s- !

  20. x w y z x w w C z y z C x z y y- s=1 1001 1011 s- w+ 1001 z- w- 0011 1000 0001 y+ w- z- x+ x- 1010 0000 0101 w- y+ x+ z- 0111 0010 0100 s+ x+ y+ y y y y y y y s=0 z+ 0111 0110

  21. Sr D C C D C Sr Sr D C Hazard-free ? (Event insertion) C NO YES Decomposition (Algebraic, Boolean relations) F

  22. Sr D C Sr D C C NO YES Decomposition (Algebraic, Boolean relations) F until no more progress Hazard-free ? (Event insertion)

  23. F+ F=0 F=1 F- Signal insertion for function F Insertion by input borders State Graph

  24. a c b ER(x) Event insertion

  25. a a c b ER(x) Event insertion SR(x) b x x x x

  26. a a a ais disabled byb = hazards b b b x b b b a a a x a a b b b x a b b b a a b a Properties to preserve ais persistent

  27. h1 x1 x1 f F f H G xn xn hm Boolean decomposition f = F (x1,…,xn) f = G(H(x1,…,xn)) Our problem: Given F and G, find H

  28. C state f next(f) (h1,h2) s1 0 0 (0,-) (-,0) s2 0 1 (1,1) s3 1 0 (0,0) s4 1 1 (-,1) (1,-) dc - - (-,-) h1 f h2 This is a Boolean Relation

  29. y- a+ c- d- a- c+ a+ S y Rs y+ c- R a- d+ c+ a F c y d

  30. y- a+ c- d- a- c+ a a+ c y d Rs y+ c c- a- d d+ c+ a c y d

  31. y- a+ c- d- a- c+ a+ y Rs y+ c- a- d+ c+ a c y d a

  32. y- a+ c- d- a- c+ a+ y Rs y+ c- D a- d+ c+ a c y d a d c

  33. Technology mapping • Merging small gates into larger gates introduces no new hazards • Standard synchronous technique can be applied, e.g. BDD-based boolean matching • Handles sequential gates and combinational feedbacks • Due to hazards there is no guarantee to find correct mapping (some gates cannot be decomposed) • Timing-aware decomposition can be applied in these rare cases

  34. Specification(STG) Reachability analysis State Graph State encoding SG withCSC Design flow Boolean minimization Next-state functions Logic decomposition Decomposed functions Technology mapping Gate netlist

  35. Timing assumptions in design flow • Speed-independent: wire delays after a forksmaller than fan-out gate delays • Burst-mode: circuit stabilizes betweentwo changes at the inputs • Timed circuits: Absolute bounds on gate / environment delays are known a priori (before physical design)

  36. Relative Timing Circuits • Assumptions:“a before b” • for concurrent events: reduces reachable state space • for ordered events: permits early enabling • both increase don’t care space for logic synthesis => simplify logic (better area and timing) • “Assume - if useful - guarantee” approach:assumptions are used by the tool to derive a circuit and required timing constraintsthat must be met in physical design flow • Applied to design of the Rotating Asynchronous Pentium Processor(TM) Instruction Decoder (K.Stevens, S.Rotem et al. Intel Corporation)

  37. a- before b- Timing assumption (on environment): b c a RT C-element: faster,smaller; correct only under timing constraint: a- before b- Relative Timing Asynchronous Circuits Speed-independent C-element b c a

  38. State Graph (Read cycle) DSr+ DTACK- LDS+ LDTACK- LDTACK- LDTACK- DSr+ DTACK- LDS- LDS- LDS- LDTACK+ DSr+ DTACK- D+ D- DTACK+ DSr-

  39. Lazy Transition Systems ER (LDS+) LDS+ LDS- LDS- LDS- FR (LDS-) DTACK- ER (LDS-) Event LDS- is lazy: firing = subset of enabling

  40. Timing assumptions • (a before b) for concurrent events: concurrency reduction for firing and enabling • (a before b) for ordered events: early enabling • (a simultaneous to b wrt c) for triples of events: combination of the above

  41. Speed-independent Netlist DSr+ DTACK- LDS+ LDTACK+ D+ DTACK+ DSr- D- LDTACK- LDS- D DTACK LDS map csc DSr LDTACK

  42. LDTACK- before DSr+ SLOW FAST Adding timing assumptions (I) DSr+ DTACK- LDS+ LDTACK+ D+ DTACK+ DSr- D- LDTACK- LDS- D DTACK LDS map csc DSr LDTACK

  43. LDTACK- before DSr+ Adding timing assumptions (I) DSr+ DTACK- LDS+ LDTACK+ D+ DTACK+ DSr- D- LDTACK- LDS- D DTACK LDS map csc DSr LDTACK

  44. LDTACK- before DSr+ State space domain DSr+ LDTACK-

  45. LDTACK- before DSr+ State space domain DSr+ LDTACK-

  46. LDTACK- before DSr+ State space domain DSr+ LDTACK- Two more unreachable states

  47. DTACK DSr DTACK DSr D LDTACK D LDTACK 00 00 01 01 11 11 10 10 00 00 01 01 11 11 10 10 Boolean domain LDS = 1 LDS = 0 - - - 0 0 - 1 1 - - - - - - - - 1 1 1 - - - - - 0 0 - 0 0 0 - 0/1?

  48. DTACK DSr DTACK DSr D LDTACK D LDTACK 00 00 01 01 11 11 10 10 00 00 01 01 11 11 10 10 Boolean domain LDS = 1 LDS = 0 - - - 0 0 - 1 1 - - - - - - - - 1 1 1 - - - - - 0 0 - - 0 0 - 1 One more DC vector for all signals One state conflict is removed

  49. Netlist with one constraint DSr+ DTACK- LDS+ LDTACK+ D+ DTACK+ DSr- D- LDTACK- LDS- D DTACK LDS map csc DSr LDTACK

  50. D DTACK TIMING CONSTRAINT LDTACK- before DSr+ LDS DSr LDTACK Netlist with one constraint DSr+ DTACK- LDS+ LDTACK+ D+ DTACK+ DSr- D- LDTACK- LDS-

More Related