1 / 71

Cells

Cells. Chapter 4. Cells. Cells are the smallest unit of life . Because they are so small, no one observed them until the microscope was invented. Robert Hooke was the first to describe a cell in 1665. Cell Theory. Cell Theory – idea that all organisms are composed of cells.

jesse-bush
Download Presentation

Cells

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Cells Chapter 4

  2. Cells • Cellsare the smallest unit of life. • Because they are so small, no one observed them until the microscope was invented. Robert Hooke was the first to describe a cell in 1665.

  3. Cell Theory • Cell Theory– idea that all organisms are composed of cells. • All organisms composed of 1+ cells within which life processes occur. • Cells are the smallest living things. • Life evolved only once, 3.5 billion years ago. • Cells arise only by division of a previously existing cell.

  4. Tiny Cells • Cells are usually very small because larger cells can’t function as efficiently. • Larger cells have a smaller surface area to volume ratio.

  5. Cell Structure Polar areas of protein Phospholipids Polar hydrophilic heads Nonpolar hydrophobic tails • Cells have a delicate cell (plasma) membranesurrounding them that controls permeability to water and dissolved substances. • A semi-fluid matrix called cytoplasmfills the inside of the cell. Polar hydrophilic heads Cholesterol Nonpolar areas of protein Phospholipid Protein channel Cholesterol Receptor protein Cell identity marker

  6. Plasma Membrane • Plasma membrane is made up of a variety of proteins in a lipid framework – the fluid mosaic model. • All cells have the same basic type of outer membrane. http://www.youtube.com/watch?v=Qqsf_UJcfBc

  7. Phospholipids • The lipid layer is composed of phospholipids. • Polar phosphate group on one end. • Two nonpolar fatty acid chains on the other.

  8. Phospholipid Bilayer • When lots of phospholipids are placed in water, they form a bilayer with fatty acid tails pointing in together – away from water. • Note that the layer is double – no fatty acid tails in contact with water. • Polar molecules can’t pass through nonpolar area without assistance.

  9. Membrane Proteins • Proteins float in the lipid bilayer and provide channels that will allow certain molecules to pass through.

  10. Cell Surface Proteins • Cell surface proteinsproject up from the membrane surface and may have carbohydrates or lipids attached to them. • Identify type of cell. • Binding sites for particular hormones or proteins.

  11. Transmembrane Proteins • Transmembrane proteinsspan the entire lipid bilayer providing channels for polar ions and molecules.

  12. Prokaryotic Cells • Cytoplasm is not compartmentalized. • Prokaryotesinclude the two kingdoms of bacteria. • Bacteria are the simplest cellular organisms. • Ribosomesfor protein construction are present. They are not organelles – no membrane.

  13. Prokaryotic Cells • Bacteria have a plasma membranelike all cells. • Cell wall(different than that found in plants or fungi) • Capsuleencloses cell wall sometimes.

  14. Prokaryotic Cells • Bacteria have diverse array of shapes. • They can adhere in chains and masses, although the cells remain separate.

  15. Eukaryotic Cells • Eukaryotesinclude all protists, fungi, plants, and animals. • Much larger than prokaryotic cells – complex internal compartmentalization. • Membrane bound organelles– specialized structures where particular cell processes occur. • Largest organelle is usually the nucleus. • Cells Alive!

  16. Cytoskeleton • Cytoskeleton– a dense network of protein fibers which supports the shape of the cell and anchors organelles in place.

  17. Cytoskeleton • Three types of protein fibers make up the cytoskeleton. • Long, slender microfilamentsmade of actin. • Hollow tubes called microtubulesmade of tubulin. • Thick ropes called intermediate fibers.

  18. Cytoskeleton • Cytoskeleton is important in determining the shape of an animal cell (no cell wall). • Filaments can form and dissolve quickly so the shape of an animal cell can change rapidly.

  19. Nucleus • The nucleusis the control center of the cell and genetic library where hereditary information is stored.

  20. Nucleus • The nuclear envelopeis actually 2 membranes. • Nuclear poresare depressions where the two membranes pinch together. • The pores contain many embedded proteins that permit proteins and RNA to pass into or out of the nucleus.

  21. Nucleus • In bacteria and eukaryotes, all hereditary information is encoded in DNA. • In eukaryotes, the DNA is divided into several segments and is associated with protein, forming chromosomes. • The protein allows the condensing of the chromosomes during cell division. • Uncoiled, threadlike strands of DNA are called chromatin.

  22. Nucleus • The darkest region of the nucleus is called the nucleolus. • Ribosomal subunit assembly. • Subunits leave through nuclear pores – ribosomes are assembled in cytoplasm.

  23. Ribosomes • Ribosomesread the RNA copy of a gene and uses the information to construct a protein. • Ribosomes are made up of several special forms of RNA – ribosomal RNA (rRNA) bound up with proteins.

  24. Endoplasmic Reticulum – The Transportation System • Endoplasmic Reticulum- “Little net within the cytoplasm” - an extensive system of internal membranes. • Sometimes forms membrane enclosed sacs called vesicles.

  25. Endoplasmic Reticulum • Carbohydrates and lipids are manufactured on the surface of the ER. • Manufacture of proteins intended for export occurs on ER that is studded with ribosomes and called rough ER. • ER with few ribosomes is called smooth ER.

  26. Golgi Complex – The Delivery System • New molecules made on the ER surface are passed through the ER membrane and into flattened stacks of membranes called Golgi bodies. • Function – collection, packaging, and distribution of molecules manufactured in the cell. • Collectively Golgi bodies are called the Golgi complex.

  27. Golgi Complex • Proteins & lipids manufactured on ER membranes are transported through the channels of the ER or as vesicles budded off of it and passed into Golgi bodies. • Inside Golgi bodies, carbohydrates may be attached.

  28. Golgi Complex • Vesicles pinch off the Golgi and carry molecules to other parts of cell or to the plasma membrane so they can be released outside the cell.

  29. Lysosomes – Recycling Centers • Lysosomesarise from the Golgi complex and contain a concentrated mix of powerful enzymes that break down macromolecules. • They act as recycling centers by digesting worn out cell components to make way for newly formed ones while recycling the proteins of the old components.

  30. Lysosomes • They also eliminate particles engulfed by the cell. • Enzymes that occur inside a lysosome digest cell parts that are engulfed – if not confined to the lysosome, they would digest the cell!

  31. Organelles That Contain DNA • Eukaryotic cells contain some organelles derived from ancient bacteria assimilated by ancestral eukaryotes. • Mitochondria– occur in all but a few eukaryotes. • Chloroplasts– occur only in plants & some protists (algae). • Centrioles– relict organelles with no membrane that occur in all animals & most protists.

  32. Mitochondria – Powerhouses of the Cell • Eukaryotic organisms extract energy from food through a complex series of chemical reactions called oxidative metabolismwhich takes place in mitochondria.

  33. Mitochondria • Mitochondria have two membranes • Outer membrane is smooth • Inner membrane bent into numerous folds called cristae. • Cristae partition mitochondrion into two compartments, an inner matrixand an outer compartment – the intermembrane space.

  34. Mitochondria • Mitochondria still have some of their original genes, contained in a circular, closed molecule of DNA (mtDNA). • This DNA loop contains genes that code for proteins essential to oxidative metabolism.

  35. Chloroplasts – Energy Capturing Centers • All photosynthesisin plants and algae takes place within chloroplasts. • Likely derived from an ancient symbiotic bacteria.

  36. Chloroplasts • Two membranes, as in mitochondria. • Inner membranes are fused to form stacks of closed vesicles called thylakoids. • Light powered reactions of photosynthesis take place within thylakoids. • Stacks of thylakoids are called grana. • Interior fluid is called the stroma.

  37. Chloroplasts • Like mitochondria, chloroplasts contain a circular DNA molecule containing genes that code for proteins essential to the process of photosynthesis.

  38. Centrioles • Centriolesassemble microtubules from tubulin subunits in animals and most protists.

  39. Centrioles • Centrioles occur in pairs in the cytoplasm. • Often at right angles • Usually near nuclear envelope • Cilia and flagella are anchored by a type of centriole called a basal body.

  40. Centrioles • Centrioles lack a membrane, but contain a circular DNA molecule involved in the production of structural proteins. • They resemble a type of bacteria. • May have originated as symbiotic bacteria.

  41. Cell Movement • Cell motion is tied to movement of actin filaments, microtubules, or both. • Actin filaments form and dissolve quickly.

  42. Cell Movement - Crawling • The arrangement of actin filaments in the cell cytoplasm allow a cell to crawl. • Motion essential to inflammation, clotting, wound healing, and the spread of cancer. • White blood cells move this way. • Produced in bone marrow, released in circulatory system, they crawl out of capillary into tissue to destroy pathogens.

  43. Cell Movement • During animal cell reproduction, chromosomes move to opposite sides of a dividing cell because they are attached to shortening microtubules. • Cells pinch in two because the belt of actin filaments contracts. • Also essential for muscle contraction.

  44. Flagella • Flagellaare long, threadlike organelles protruding from the cell surface. • Each flagellum is anchored at a basal bodyand consists of 9 microtubule pairs surrounding 2 central microtubules (9+2 arrangement). • 9+2 arrangement is fundamental feature of eukaryotes. • Examples: human sperm cell, many single celled organisms - used for locomotion.

  45. Cilia • When flagella are very numerous and organized in dense rows they are called cilia. • Cilia have the same structure as flagella, but are usually short. • Examples: lining of human trachea to move dust and mucus out of the respiratory tract to the throat, protists such as the Paramecium.

More Related