1 / 43

MPI Kernphysik, Heidelberg Humboldt Univ. Berlin Ruhr-Univ. Bochum Univ. Hamburg LSW Heidelberg

MPI Kernphysik, Heidelberg Humboldt Univ. Berlin Ruhr-Univ. Bochum Univ. Hamburg LSW Heidelberg Univ. Tübingen Ecole Polytechnique, Palaiseau APC Paris Univ. Paris VI-VII Paris Observatory, Meudon LAPP Annecy LAOG Grenoble LPTA Montpellier CEA Saclay CESR Toulouse Durham Univ.

jewel
Download Presentation

MPI Kernphysik, Heidelberg Humboldt Univ. Berlin Ruhr-Univ. Bochum Univ. Hamburg LSW Heidelberg

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. MPI Kernphysik, Heidelberg Humboldt Univ. Berlin Ruhr-Univ. Bochum Univ. Hamburg LSW Heidelberg Univ. Tübingen Ecole Polytechnique, Palaiseau APC Paris Univ. Paris VI-VII Paris Observatory, Meudon LAPP Annecy LAOG Grenoble LPTA Montpellier CEA Saclay CESR Toulouse Durham Univ. Dublin Inst. for Adv. Studies Charles Univ., Prague Yerewan Physics Inst. North-West Univ., Potchefstroom Univ. of Namibia, Windhoek VHE Gamma Ray Astronomy with the HighEnergyStereoscopicSystem: Highlights W. Hofmann MPIK Heidelberg

  2. MPI Kernphysik, Heidelberg Humboldt Univ. Berlin Ruhr-Univ. Bochum Univ. Hamburg LSW Heidelberg Univ. Tübingen Ecole Polytechnique, Palaiseau APC Paris Univ. Paris VI-VII Paris Observatory, Meudon LAPP Annecy LAOG Grenoble LPTA Montpellier CEA Saclay CESR Toulouse Durham Univ. Dublin Inst. for Adv. Studies Charles Univ., Prague Yerewan Physics Inst. North-West Univ., Potchefstroom Univ. of Namibia, Windhoek September 28, 2004: Inauguration of the H.E.S.S. telescopes VHE Gamma Ray Astromony with the HighEnergyStereoscopicSystem: Highlights W. Hofmann MPIK Heidelberg

  3. Four telescopes, 107 m2 mirror area each 960 PMT cameras, field of view 5o Observation in moonless nights, ~1000 h / year Each night several objects are tracked and ~300 images recorded per second First analysis (almost) online in the same night on PC cluster in Namibia Final analysis and calibration in Europe Energy threshold: ~ 100 GeV Sensitivity: 1% Crab in 25 h

  4. H.E.S.S. Highlights • Galactic sources • Galactic plane survey • Supernova remnants • Pulsar wind nebulae • Binaries • The Galactic Center • Extragalactic sources • Details & physics discussion in parallel sections

  5. H.E.S.S. Highlight:Galactic Plane Survey

  6. Scale height: ≈ 0.3o rms ≈ molecular gas  S. Funk, OG 23  A. Lemiere, OG 23 H.E.S.S. Highlight:Galactic Plane Survey 15 new TeV sources + 3 known

  7. Ensemble characteristics Most sources are extended (size resolved if > 2…3’) Spectra measured for all sources; relatively hard , <G> = 2.3 Photon index Source size

  8. “beam size” What are they ? (smoothed image) 5 sources could be associated with SNR, e.g. HESS J1834-087 3 could be pulsar wind nebulae, typically displaced from the pulsar some coincide with EGRET, ASCA, … unidentified sources 3 have no counterpart known to us

  9. HESS J1813-178: now identified (smoothed image) HESS J1813-178 White et al. 2005 Brogan et al. 2005 20 cm VLA Ubertini et al., 2005 Integral Beam

  10. HESS J1614-518, J1708-410: no counterpart (yet) (smoothed image) (smoothed image)

  11. H.E.S.S. Highlight: Resolved Supernova-Remnants SNR as cosmic particle accelerators Predicted power law spectrum dN/dE ~ E-2…2.2 Efficiency 10-50% Imaged using secondary gamma rays created in interactions with ambient medium

  12.  D. Berge, OG 22 H.E.S.S. Highlight: Resolved Supernova-Remnants RX J1713-3946

  13. Spectra Preliminary  Acceleration of primary particles in SNR shock to well beyond 100 TeV • Index ~ 2.1 – 2.2 • Little variation across SNR • Cutoff or break at high energy

  14. H.E.S.S. Gamma rays ASCA X-rays NANTEN CO at ~1 kpc

  15. Primary population: e or p ? Electron model B ~ 10 mG • Need about 10 mG B field to match flux ratios • Simplest electronic models don’t work well

  16. RX J0852.0-4622 “Vela Junior” Flux ~ Crab Index 2.1 ± 0.1  N. Komin, OG 22 Feb. 2004 (3.2 h) New 04/05 data 3D-Analysis Preliminary ROSAT contours

  17. High ISM density Reverse shock crushes PWN Pulsar wind termination shock Low ISM density Blondin et al. • Asymmetric PWN due to • collimated wind • SNR reverse shock crushing into PWN Pulsar wind creates void H.E.S.S. Highlight:Pulsar Wind Nebulae Blondin et al. ApJ 563 (2001) 806 • Pulsar winds have modest energetics • compared to SN ejecta, but … • most of the energy is in electrons • radiative loss time scales for e± are a few 1000 y, versus 107 y for p

  18. H.E.S.S. Highlight:Pulsar Wind Nebulae  B. Khelifi, OG 22 Vela X hard spectrum G ≈1.9 or G ≈1.5  cutoff extends to 50 TeV no emission from vela pulsar detected Vela pulsar ROSAT contours Preliminary

  19. Photon index 2.27 ± 0.03 ± 0.20  B. Khelifi, OG 22 Another pulsar wind: MSH 15-52 Contours: Rosat Greyscale: Radio

  20. HESS J1825-137 X-rays Gaensler et al. TeV  O. de Jager, OG 22

  21. March 04 Pulsar eclipsed PSR B1259-63 3.4 year highly eccentric orbit around ~10 M Be star closest approach ~1013 cm or ~20 stellar radii H.E.S.S. Highlight:Distant and Close Binaries Mar 04 Douglas Gies (CHARA, GSU) William Pounds

  22.  S. Schlenker, OG 22 PSR B1259-63first variable galactic TeV source HESS J1303-631 PSR B1259-63 Feb. 04 early March 04 Apr./May 04

  23. with more data … Distant and Close Binaries  M. de Naurois, OG 22

  24. Paredes J. M. et al., A&A 2002 RA (mas) Microquasar LS 5039first detection of TeV emission from a microquasar • compact 4 (?) M object in eccentric 4 day orbit around 20-30 M star • closest approach ~1012 cm or ~2 stellar radii fueled by wind accretion(?)

  25. Spectral energy distribution • Expect strong attenuation of gammas in photon field of massive star • Hadronic component ? • Orbital modulation ?? Index 2.12 ± 0.15

  26. SNR G0.9+0.1 PWN The centerof ourGalaxy Sgr A East SNR ? Black hole ? DM Annihilation ? GC

  27. Point-like core Extended tail Similar to NFW profile Colors: H.E.S.S. Contours: Radio Angular distribution Sagittarius A syst. error

  28. Gamma ray spectrum  L. Rolland, OG 22 Preliminary • Power law, index 2.3 • No significant variability • on year scale • on month scale • on day scale • on hour scale • on minute scale (in ~40 h obs. time distributed over 2 years) Preliminary

  29. 20 TeV Neutralino 20 TeV KK particle Dark matter annihilation ? Preliminary proposed based on early H.E.S.S. data proposed before H.E.S.S. data  J. Ripken, OG 22

  30. H.E.S.S. Highlight:Galactic center region

  31. GC molecular clouds Tsuboi et al. 1999 H.E.S.S. Highlight:Galactic center region

  32. H.E.S.S. Highlight:Galactic center region  J. Hinton, OG 21

  33. Diffuse emission from the GC ridge Spectral index 2.29 ± 0.07 ± 0.20 Implies harder CR spectrum than in solar neighborhood  Proximity of accelerator and target

  34. (subtracted) gamma rays CS

  35. x x x gVHEgEBL e+e- Extragalactic TeV astronomy • Physics of AGN jets • Density of cosmological extragalactic background light (EBL) EBL

  36. Costamante & Ghisellini, 2002 501 421 2155 1101 1426 2344 2356 2005 H.E.S.S. Highlight:New distant blazar sources 1ES 1101-232 z = 0.186 ~12 s Preliminary H 2356-309 z = 0.165 ~10 s  S. Pita, OG 23  M. Tluczykont, OG 23

  37. Source spectrum G = 1.5 EBL Spectra & ExtragalacticBackgroundLight 1 ES 1101 G = 2.9±0.2 H 2356 (x 0.1) G = 3.1±0.2 Preliminary

  38. Spectra & ExtragalacticBackgroundLight Source spectrum  Upper limit on EBL too much EBL 1 ES 1101 G = 2.9±0.2 H 2356 (x 0.1) G = 3.1±0.2 Preliminary

  39. Spectra & ExtragalacticBackgroundLight UV EBL Not really a solution: add huge amount of UV photons to EBL  problems with source energetics, X-ray/gamma-ray SED ratio too much EBL 1 ES 1101 G = 2.9±0.2 H 2356 (x 0.1) G = 3.1±0.2 Preliminary

  40. X X X   X

  41. Reference shape HESS limits Spectra & ExtragalacticBackgroundLight • EBL resolved • Universe more • transparent X measure- ments upper limits X lower limits from galaxy counts

  42. Conclusion • First H.E.S.S. results demonstrate that latest generation Cherenkov instruments have reached the critical sensitivity threshold • Lots of interesting stuff out there – hard spectra and extended sources • We’re looking forward to explore this domain further, together with CANGAROO, MAGIC, VERITAS, … MACE • See talks and posters (OG 21, OG 22, OG 23, OG 27) for details on H.E.S.S. results, also • M87 detection, PSK 2005, 2155 spectra, Crab, Mkn 421, … • SNR, pulsar, microquasar, NGC253, … limits, …

More Related