301 likes | 542 Views
Calcul et interprétation d’indices. DÉFINITION ET INTÉRÊT. DEFINITION. Une série d’indices base 100 est une série statistique représentant la progression d’une population statistique si celle-ci avait eu 100 pour valeur de départ. Exemple :.
E N D
DÉFINITION ET INTÉRÊT
DEFINITION Une série d’indices base 100 est une série statistique représentant la progression d’une population statistique si celle-ci avait eu 100 pour valeur de départ. Exemple : Evolution de la population française, en milliers Sources : A. Maddison : http://www.ggdc.net/maddison/ Indices base 100 en 1700 Si la population française avait été de 100 en 1700, elle se serait élevée à 300.03 en 2009
INTÉRÊT Les indices base 100 utilisent le repère « 100 » comme point de départ. Evolution de la population française, en milliers et en indices base 100 en 1700 100 est un repère qui facilite la représentation mentale de l’évolution. Sources : A. Maddison : http://www.ggdc.net/maddison/ Apres avoir transformé la série statistique en indices base 100, son évolution devient beaucoup plus simple à se représenter: On constate instantanément que la population française a été multipliée par 3 depuis de 1700 a 1900 selon Maddison. De la même façon, de 1700 a 1850, la population passe de l’indice 100 a l’indice 169.30, elle augmente donc de 69.30% pendant cette période.
INTÉRÊT Les séries d’indices base 100 permettent de mesurer la vitesse d’accroissement d’une population statistique et de la comprendre aisément grâce a l’utilisation du repère 100, aussi bien sous la forme de tableaux statistiques que sous celle de graphiques. Evolution de la population française en indices base 100 en 1700 L’utilisation du repère 100 permet également de comparer l’évolution de plusieurs populations statistiques et de représenter cette évolution sur un même graphique, même si les échelles sont très différentes. Sources : A. Maddison : http://www.ggdc.net/maddison/
Comparons l’évolution des populations chinoise et française. Populations chinoise et française, en milliers Sources : A. Maddison : http://www.ggdc.net/maddison/ Ces deux séries statistiques ne nous permettent pas vraiment de tirer des conclusions. Quant a la représentation graphique… La courbe de la population française est écrasée du fait de la différence d’échelle entre les deux populations. Pour surmonter cette difficulté, faisons partir les deux séries de la même valeur : 100
Il faut transformer chaque série en indices base 100. A présent on voit bien que si la population française a été multipliée par 3 entre 1700 et 2009, la population chinoise a été multipliée par 9.6 pendant la même période. Evolution des populations chinoise et française, en indices base 100 en 1700 Sources : A. Maddison : http://www.ggdc.net/maddison/ Le graphique correspondant est plus explicite que le précédent. Le calcul des indices a permis de surmonter le problème de la différence de taille entre les deux pays.
Il est donc intéressant de calculer des indices: • Cela permet de calculer instantanément une évolution par rapport a l’année de base.… • et de comparer l’évolution de plusieurs populations statistiques, même lorsque les échelles de grandeur sont très différentes.
CALCUL ET INTERPRÉTATION
CALCUL Evolution de la population française, en milliers et en indices base 100 en 1700 Comment a-t-on obtenu ces résultats ? Sources : A. Maddison : http://www.ggdc.net/maddison/ Une série d’indices base 100 est une série statistique représentant la progression d’une population statistique si celle-ci avait eu 100 pour valeur de départ
CALCUL Une série d’indices base 100 est une série statistique représentant la progression d’une population statistique si celle-ci avait eu 100 pour valeur de départ Evolution de la population française, en milliers et en indices base 100 en 1700 On commence donc par poser : 21471 équivaut a 100 On applique ensuite le produit en croix 100 Sources : A. Maddison : http://www.ggdc.net/maddison/ 21471 100 Si 21471 équivaut a 100, a combien équivaut 36350? 36350 A = A x 21 471 36 350 x 100 36 350 x 100 = A 21 471 = A 169.30
CALCUL Une série d’indices base 100 est une série statistique représentant la progression d’une population statistique si celle-ci avait eu 100 pour valeur de départ Evolution de la population française, en milliers et en indices base 100 en 1700 On procède de la même manière pour B : 21471 équivaut a 100 On applique ensuite le produit en croix Sources : A. Maddison : http://www.ggdc.net/maddison/ 21471 100 Si 21471 équivaut a 100, a combien équivaut 40598? 40598 B = B x 21 471 40 598 x 100 40 598 x 100 = B 21 471 = B 189.08
CALCUL Une série d’indices base 100 est une série statistique représentant la progression d’une population statistique si celle-ci avait eu 100 pour valeur de départ Evolution de la population française, en milliers et en indices base 100 en 1700 On procède de la même manière pour C : 21471 équivaut a 100 On applique ensuite le produit en croix Sources : A. Maddison : http://www.ggdc.net/maddison/ 21471 100 Si 21471 équivaut a 100, a combien équivaut 40598? 42518 C = C x 21 471 42 518 x 100 42 518 x 100 = C 21 471 = C 198.03
Récapitulons… On peut donc en déduire la formule suivante : Evolution de la population française, en milliers et en indices base 100 en 1700 Vn : Valeur de l’année n que l’on veut transformer en indices Vb : Valeur de l’année de base In : Indice de l’année n. Sources : A. Maddison : http://www.ggdc.net/maddison/ Vn x 100 = In Vb 36 350 x 100 = A 21 471 Il suffit donc de multiplier par 100 la valeur que l’on veut transformer en indices. 40 598 x 100 = B 21 471 Et de diviser par la valeur correspondant a l’année de base (toujours la même !) 42 518 x 100 = C 21 471
Procédures Appliquer la formule revient donc a : Il faut donc retenir la formule suivante : • Calculer le coefficient multiplicateur de chaque intervalle par rapport a la valeur de l’année de base • multiplier par 100 le résultat • arrondir au dixième (2chiffres après la virgule). Vn : Valeur de l’année n que l’on veut transformer en indices Vb : Valeur de l’année de base In : Indice de l’année n. Vn = In Oui bien : Vb X 100 • Diviser toutes les valeurs de la ligne ou de la colonne a transformer par la valeur de l’année de base • Multiplier le résultat par 100 • Arrondir au dixième. Coefficient Multiplicateur Par rapport a l’année de base.
Ne vous trompez pas dans la lecture de la valeur de base Evolution de la population française, en milliers et en indices base 100 en 1950 Calculs à faire 100 Calculs à faire A présent l’année de base n’est plus 1700 mais 1950 ! Sources : A. Maddison : http://www.ggdc.net/maddison/ Ce n’est plus la valeur de l’année de base ! Voici la nouvelle valeur de l’année de base. Il faudra diviser toutes les valeurs de la ligne par celle-ci et multiplier par 100 Ne pas confondre valeur de l’année de base et année de base!
INTERPRÉTATION DE RÉSULTATS Evolution de la population française, en milliers et en indices base 100 en 1700 Comment lire le chiffre entouré? Sources : A. Maddison : http://www.ggdc.net/maddison/ En 1950, l’indice base 100 de la population française était de 198.03 Faux !
INTERPRÉTATION DE RÉSULTATS Evolution de la population française, en milliers et en indices base 100 en 1700 Comment lire le chiffre entouré? Si l’indice est supérieur à 50 et inférieur à 200 : utiliser le taux de variation Sources : A. Maddison : http://www.ggdc.net/maddison/ Entre [année de base et année d’observation], selon [source], la population statistique [attention à bien prendre en compte toutes ses caractéristiques] a augmenté(ou diminué) de X%. Entre 1700 et 1950, selon Maddison, la population française a augmenté de98.03 %. (de 100 a 198.03)
INTERPRÉTATION DE RÉSULTATS Evolution de la population française, en milliers et en indices base 100 en 1700 Comment lire le chiffre entouré? Si l’indice est supérieur a 200 : utiliser le coefficient multiplicateur Sources : A. Maddison : http://www.ggdc.net/maddison/ Entre [année de base et année d’observation], selon [source], la population statistique [attention à bien prendre en compte toutes ses caractéristiques] a été multipliée (ou divisée) par X Entre 1700 et 2000, selon Maddison, la population française a été multipliée par 2.85 . (284.74 / 100 = 2.8474)
Les indices permettent de connaître la variation d’une population statistique par rapport à l’année qui a été choisie comme base. Dans ce cas, on obtient instantanément soit le coefficient multiplicateur (on divise par 100), soit le taux de variation (on soustrait 100). Dès qu’il s’agit de mesurer la variation entre deux années quelconques (l’année de base n’étant pas l’année de départ), la soustraction ne s’applique plus. Il faut calculer le taux de variation. De 1700 à 1900 la population française a augmenté de 89.08% (189.08-100). Evolution de la population française, en milliers et en indices base 100 en 1700 Mais de 1850 à 1900, il ne faut surtout pas faire 189.08 – 169.3 car on ne part plus de 100 ! Pour mesurer l’évolution entre 1850 et 1900, il faut calculer le taux de variation. Sources : A. Maddison : http://www.ggdc.net/maddison/
Levons quelques difficultés d’interprétation Un indice inférieur à 100 signifie une baisse par rapport à la valeur de l’année de base. Le taux de variation s’obtient en soustrayant 100 à cet indice. Est-il possible de rencontrer un indice inférieur à 100? Un indice inférieur a 100 est tout à fait possible, cela signifie simplement que la population statistique a diminué par rapport à l’année de base. Dans ce cas, nous voyons bien que la production de blé a baissé de 22% de 2008 a 2009 (78 – 100 = -22) De 2008 a 2010, l’indice est passe de 100 à 25, ce qui représente une baisse de 75% (25-100= -75), ou une division par 4 des quantités produites. 80 tonnes de blé 62.4 tonnes de blé 20 t 2008 2009 2010
L’année de base n’est pas forcement la première année de la série. Il faut être attentif pour calculer ou lire un indice L’année de base est-elle toujours la première année de la série? Transformons ces données en séries d’indices base 100 en 1900 On commence par poser 100 dans la case correspondant à l’indice de l’année de base. La valeur de l’année de base est donc celle de 1900, soit 116 747 On divise l’ensemble de la ligne par cette valeur, on multiplie par 100 et on arrondit au dixième. En général, oui, mais ce n’est pas une obligation, il faut donc être attentif aux consignes ou aux indications portées sur le tableau statistique. Sources : A. Maddison : http://www.ggdc.net/maddison/ 30.38 49.71 188.86 1219.36 100
Les séries d’indices se présentent-elles toujours sous la forme de tableaux ? Non, les séries d’indices sont souvent représentées sous la forme de graphiques. Non, l’intérêt des indices est de faciliter les représentations graphiques des évolutions de populations très différentes. On rencontre beaucoup de graphiques construits à partir de séries d’indices. Dans ce cas, l’interprétation des indices ne diffère pas de celles que permettent les tableaux statistiques Rédigeons une phrase avec les données entourées. De 1700 a 1950, selon Maddison, la population française a été multipliée par 2 alors que la population chinoise a été multipliée par 4. Evolution de la population, en indices base 100 en 1700 Sources : A. Maddison : http://www.ggdc.net/maddison/
Un indice inférieur à 100 signifie une baisse par rapport a la valeur de l’année de base. Le taux de variation s’obtient en soustrayant 100 à cet indice. Est-il possible de rencontrer un indice inférieur à 100? L’année de base n’est pas forcement la première année de la série. Il faut être attentif pour calculer ou lire un indice L’année de base est-elle toujours la première année de la série? Non, les séries d’indices sont souvent représentées sous la forme de graphiques. Les séries d’indices se présentent-elles toujours sous la forme de tableaux ?
CONCLUSION Vous devez être capable : • De calculer des séries d’indices • De construire des graphiques a partir de vos résultats • De rédiger une phrase à partir de données statistiques et d’interpréter une série, sous forme de tableaux ou de graphique.