1 / 29

Control estadístico de Proceso

Control estadístico de Proceso. Gráficas de Control Muestreo de aceptación. Terminología. Calidad es “la totalidad de características de un producto o servicio que hace que cumpla con las especificaciones de diseño.”

johana
Download Presentation

Control estadístico de Proceso

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Control estadístico de Proceso • Gráficas de Control • Muestreo de aceptación

  2. Terminología • Calidad es “la totalidad de características de un producto o servicio que hace que cumpla con las especificaciones de diseño.” • Aseguramiento de la calidad se refiere al conjunto de políticas, procedimientos y guías establecidas por la organización para alcanzar y mantener la calidad. • El objetivo de la ingeniería en calidades incluir calidad en el diseño de los productos y procesos, así como identificar problemas potenciales de calidad antes de la producción. • Control de calidad consiste en una serie de inspecciónes y medidas para determinar si los estándares de calidad se cumplen.

  3. Control Estadístico de Proceso (CEP) • El objetivo del CEP es determinar si el proceso debe continuar o si debe ser ajustado para que alcance el nivel de calidad deseado. • Si la variación en el resultado de la producción se debe a causas asignables(errores del operador, descompostura de una máquina,materia prima defectuosa, . . . ) el proceso debe ajustarse o corregirse lo más rápido posible. • Si la variación en el proceso se debe a causas comunes(variación en materiales, humedad, temperatura, . . . ) las cuales no pueden modificarse el proceso no requiere ser ajustado.

  4. CEP Pruebas de Hipótesis • El CEP se basa en pruebas de hipótesis. • La hipótesis nulaH0 se formula en términos de un proceso de producción en control • La hipótesis alternativaHa se formula en términos de un proceso que no está en control. • Como en cualquier prueba de hipótesis, es posible observar el error de Tipo I (ajustar un proceso cuando está en control) y el error de tipo II(permitir que un proceso fuera de control continúe.

  5. Los resultados en CEP • Error de Tipo I y de Tipo II • Estado del proceso • H0 CiertoHa Cierto • DecisionEn Control Fuera de Control • AceptarH0 Corregir Error • Continuar con Decisión Tipo II • el Proceso • RechazarH0 Error Corregir • Ajustar el Proceso Tipo I  Decisión

  6. Gráficas de Control • En CEP se usan gráficas llamadas gráficas de controlpara monitorear los procesos. • Una gráfica de control proporciona una base para decidir si la variación en los resultados se debe a causas comunes(en control) o a causas asignables (fuera de control) • Una gráfica de control tiene tres líneas importantes: una línea central (CE), un límite de control superior(UCL)y un límite de control inferior(LCL). • Estas líneas se escogen de manera que cuando el proceso está en control hay una alta probabilidad de que la medida observada en la muestra esté entre los límites superior e inferior. Los valores fuera de estos límites dan evidencia de que el proceso está fuera de control.

  7. Gráfica-x • Una Gráfica-Xse usa cuando la calidad del resultado se mide en función de una variable contínua tal como longitud, peso, volumen….. • x representa la media del resultado en la muestra. • La línea central (CL) de la gráfica corresponde a la media del proceso cuando este se encuentra en control. • El eje vertical de la gráfica muestra la escala de medida de la variable de interés. • Se toma una muestra, se calcula la media de la muestra x y esta se coloca en la gráfica.

  8. Gráfica- x • Se toman muestras en el tiempo y la media se agregan a la gráfica de izquierda a derecha. • Cada vez que se pone un punto en la gráfica se realiza una prueba de hipótesis para determinar si el proceso está o no en control. • Se usa la Distribución Muestral de x para determinar que valores de x son razonables si el proceso está en control. • En la práctica se define un número suficiente de valores razonables de x que estén dentro de 3 desviaciones estándar por de la línea central.

  9. Estructura de la Gráfica - x UCL Media del proceso en control CL LCL Tiempo

  10. Límites de control para una Gráfica- x • Media del proceso y desviación conocidas donde:

  11. Límites de control para una Gráfica - x • Media del rproceso y desviación desconocida where x = media total de las muestras R = rango promedio A2 = constante que depende de n; (se encuentra en Tablas) = = = _

  12. Factores para la Gráfica-x y la Gráfica - R nd2A2d3D3D4 2 1.128 1.880 0.853 0 3.267 3 1.693 1.023 0.888 0 2.574 4 2.059 0.729 0.880 0 2.282 5 2.326 0.577 0.864 0 2.114 6 2.534 0.483 0.848 0 2.004 7 2.704 0.419 0.833 0.076 1.924 8 2.847 0.373 0.820 0.136 1.864 9 2.970 0.337 0.808 0.184 1.816 10 3.078 0.308 0.797 0.223 1.777 : : : : : :

  13. Interpretación de la Gráficas de Control • La localización y el patrón de los puntos en una gráfica de control permite determinar, con una pequeña probabilidad de error, si el proceso está bajo control estadístico. • Un dato fuera de los límites de control puede ser un indicio de un proceso fuera de control. • Ciertos patrones de los puntos dentro de los límites de controlpueden ser una señal de problemas de calidad. • Un gran número de puntos a un lado de la línea central. • Seis o siete puntos en un solo lado de la línea central que indican una tendencia de crecimiento o decrecimiento. • . . . Otros patrones.

  14. Otras gráficas de control • Gráfica-R • Usada para monitorear la variabilidad en la muestra. • Gráfica-p Usada para monitorear la proporción de piezas defectuosas en una muestra. • Gráfica-np Usada para monitoreara el número de artículos defectuosos en una muestra.

  15. Límites de Control para una Gráfivca - R _ UCL = RD4 LCL = RD3 donde R = rango promedio D3, D4 = constantes que dependen de n ; ( en la tabla) _ _

  16. Límites de Control para una Gráfica- p donde suponiendo np> 5 n (1-p) > 5

  17. Límites de Contro para una Gráfica - np suponiendo np> 5 n (1-p) > 5 Nota: Si el LCL es negativo, entonces LCL = 0

  18. Muestreo de Aceptación • Muestreo de aceptaciónes un método estadístico que permite decidir si se acepta o rechaza un lote de producción a partir de la inspección de una muestra de este lote (grupo de artículo). • El muestreo de aceptación se realiza después de que el producto ha sido manufacturado. • No siempre es posible inspeccionar el 100% del lote: es muy caro y poco práctico (línea continua), implica destrucción. • Se basa es preubas de hipótesis. • Las hipótesis son: • H0: lote de buena calidad • Ha: lote de mala calidad

  19. Resultados en un Muestreo de Aceptación • Errores de Tipo I y de Tipo II • Estado del Lote • H0 CiertoHa Cierto • DecisiónLote de calidad  Lote sin calidad • AceptarH0 Corregir Error de Tipo II • Aceptar el Lote Decisión Riesgo del Consumidor • RechazarH0 Error de Tipo I Corregir • Rechazar el Riesgo del Decisión  Lote Productor

  20. Probabilidad de aceptar un lote • Función de probabilidad Binomial para Muestreo de Aceptación donde n = tamaño de la muestra p = proporción de artículos defectuosos en el lote x = número de artpiculos defectuosos en la muestra f (x ) = probabilidad de tener x artículos defectuosos en la muestra

  21. Ejemplo: Muestreo de aceptación Se toma una muestra de 20 artículos en el lote. La política es aceptar el lote si no hay más de 2 artículos defectuosos en la muestra Suponiendo que el 5% de un lote son artículos defectuosos, ¿cuál es la probabilidad de que se acepte el lote o que se rechace? n = 20, c = 2, y p = .05 P (Aceptar el Lote) = f (0) + f (1) + f (2) = .3585 + .3774 + .1887 = .9246 P (Rechazar el lote) = 1 - .9246 = .0754

  22. Seleccionar un plan para Muestreo de Aceptación a = riesgo del productor = probabilidad de cometer un error de Tipo I = probabilidad de que un lote con p0 artículos defectuosos sea rechazado b = riesgo del consumidor = probabilidad de cometer un error de Tipo II = probabilidad de que un lote con p1 artículos defectuosos sea aceptado donde: p0 se usa para controlar el riesgo del productor p1 se usa para controlar el riesgo del consumidor

  23. Curva de Operación Prob. de Aceptar el Lote 1.0 CO Curva para n = 15, c = 0 p0 = .03, p1 = .15 a = .37 .8 .6 .4 .2 b = .09 25 5 10 15 20 0 p0 p1 % de defectuosos en el lote

  24. Se rechaza Se acepta N n c 0 Tipos de Muestreo de Aceptación • Muestreo Simple: dado el tamaño del lote (N), se determina el tamaño de la muestra (n) y el nivel de rechazo ( c ). “ Si hay más de c artículos defectuosos en la muestra el lote se rechaza, en caso contrario se acepta” • Si X>c se rechaza • Si X< o = c se acepta Sea X el número de piezas defectuosas (v.a.)

  25. Tipos de Muestreo de Aceptación • Muestreo Doble: dado el tamaño del lote (N), se determina el tamaño de dos muestras (n1)y (n2) y tres niveles de rechazo ( c1, c2, c3 ). (c2=c3) • 1. Con la primera muestra (n1) “ Si hay más de c2 artículos defectuosos (r1) en la muestra el lote se rechaza, si hay menos de c1 se acepta, en caso contrario se toma la segunda muestra” • 2. Con la segunda “Si el número de piezas defectuosas de las dos muestras (r1+r2) es mayor a c3 se rechaza el lote en caso contrario se acepta

  26. MUESTREO DOBLE • Con la primera muestra Si X1> c2 se rechaza Si X1 c1 se acepta En caso contrario c1X1  c2 se toma una segunda muestra X2  c3-X1 se acepta el lote X2 > c3-X1 se rechaza el lote Se acepta Otra muestra Se rechaza N n1 c1 c2 0 Se rechaza Se acepta N n c3 0

  27. Se rechaza Se acepta N n c 0 Tipos de Muestreo de Aceptación • Muestreo Simple: dado el tamaño del lote (N), se determina el tamaño de la muestra (n) y el nivel de rechazo ( c ). “ Si hay más de c artículos defectuosos en la muestra el lote se rechaza, en caso contrario se acepta” • Si X>c se rechaza • Si X< o = c se acepta Sea X el número de piezas defectuosas (v.a.)

  28. Muestreo Múltiple • Un plan de muestreo múltipleusa usa dos o más etapas de muestreo. • En cada etapa ls posibilidades son: • detener el muestreo y aceptar el lote, • detener el muestreo y rechazar el lote. • Un plan de muestreo múltiple resulta en tamaños totales de muestra más pequeños con el la misma probabilidad de cometer error de Tipo I o de Tipo II.

  29. MUESTREO SIMPLE • NOTACIÓN

More Related