1 / 65

Recent Results and Prospects of High- Energy Neutrino Astronomy APPIC Meeting May 8, 2014 Paris

Recent Results and Prospects of High- Energy Neutrino Astronomy APPIC Meeting May 8, 2014 Paris. Christian Spiering , DESY Zeuthen. Detection principle and physics goals. Detection Modes. Muon track from CC muon neutrino interactions Angular resolution 0.5°/0.1° for ice / water 1km³

joylyn
Download Presentation

Recent Results and Prospects of High- Energy Neutrino Astronomy APPIC Meeting May 8, 2014 Paris

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. RecentResultsandProspectsof High-EnergyNeutrino Astronomy APPIC Meeting May 8, 2014 Paris Christian Spiering, DESY Zeuthen

  2. Detectionprincipleandphysicsgoals

  3. Detection Modes • Muon track from CC muon neutrino interactions • Angular resolution0.5°/0.1° forice/water 1km³ • dE/dx resolution factor 2-3 • Cascade from CC electron/tau and NC all flavor interactions • Angular resolution 10°/3° at 100 TeVforice/water • Energy resolution ~ 15%

  4. Physics with neutrino telescopes • Search for the sources of high-energy cosmicrays • Dark Matter and Exotic Physics • WIMPs • Magnetic Monopoles and other superheavies • Violation of Lorentz invariance • Neutrino and Particle Physics • Neutrino oscillations (incl. mass hierachy) • Charm physics • Cross sections at highest energies • Supernova Collapse Physics • MeV neutrinos in bursts  early SN phase, neutrino hierarchy, ... • Cosmic Ray Physics • Spectrum, composition andanisotropies • Earth and marine science, glaciology

  5. Main physicsdriversfornewprojects Gtonscale • Search for the sources of high-energy cosmicrays • Dark Matter and Exotic Physics • WIMPs • Magnetic Monopoles and other superheavies • Violation of Lorentz invariance • Neutrino and Particle Physics • Neutrino oscillations (incl. mass hierachy) • Charm physics • Cross sections at highest energies • Supernova Collapse Physics • MeV neutrinos in bursts  early SN phase, neutrino hierarchy, ... • Cosmic Ray Physics • Spectrum, composition and anisotropies Mtonscale

  6. present Devices

  7. Existingdetectors Baikal NT200+ ANTARES AMANDA IceCube

  8. 3600 m Lake Baikal 1366 m Proofofprinciple First underwaterneutrinos NT200

  9. NT200+ 3600 m NT200 1366 m

  10. V. Bertin - CPPM - ARENA'08 @ Roma 2500m 450 m 70 m ANTARES • 885 PMTs • 12strings • Operating in final • configuration • since 2008 Proofforreliable, precision operationof a -telescope

  11. IceCube Neutrino Observatory IceTop air shower detector 81 pairs of water Cherenkov tanks IceCube 86 strings including 8 Deep Core strings 60 PMT per string DeepCore 8 closely spaced strings 1450m Threshold: IceCube ~ 100 GeV DeepCore ~10 GeV 2450m 2820m

  12. http://www.globalneutrinonetwork.org/ • Oct. 2013, Munich • Antares • Baikal • IceCube • KM3NeT

  13. Selected Recentresultswithfreshmotivationfornewgenerationdevices

  14. Atmosphericneutrinospectrum proton c,(b) prompt νe,μ e,μ π μ νμ e νμ νe conventional

  15. Atmospheric neutrinos in IceCube .. and ANTARES arXiv:1308.1599

  16. Muon neutrino survival probability Oscillations of atmospheric neutrinos Vertically upward ANTARES/DeepCore Horizontal cosmicray n Earth L q

  17. Muon neutrino survival probability Oscillations of atmospheric neutrinos Vertically upward ANTARES/DeepCore Horizontal cosmicray n Earth L q

  18. Search forpointsourcesofextra-terrestrial neutrinos

  19. Limits for steady pointsources(assuming E-2spectra) • Factor 1000 in 12 years • No detectionsyet • ANTARES is best at Southern Sky IceCube sensitivity at Southern sky only for cut-off at >> 100 TeV • Expectanother factor 5 for IceCube in 2016 • KM3Net+GVD would give ~ factor 50 w.r.t. Antares Southern Sky | Northern Sky

  20. IceCube 3 years: upper limits and predictions

  21. Diffuse fluxSearch for an excessathighestenergies

  22. HESE resultsIceCube 3rdyear 5.7 3rdPeVevent.

  23. HESE skyplot, 3 years Couldthatbe a pointsource?

  24. Importanceof Northern detector ANTARES, arXiv 1402.6182: IceCubeaccumulation in tensionwithpoint-sourceinterpretation !

  25. Through-goingmuons in IceCube IC-79: 3.7 IC-59: 1.8 Highest energy: ~550 TeV (neutrino energy likely in PeV range)

  26. Interpretations • Theoreticalinterpretations • GalacticSources • ExtragalacticSources • Exotics • … • Presentconclusions still based on poordata. Soon: • 4 years HESE • More upwgardgoingmuondata • More cascades • Stackingofpointsources • Weareentering a periodwheretheoreticalspeculationscanrely on betterdata, andsomeusefulconclusionscouldbedrawnfortheconfigurationoffuturedetectors

  27. The Future projects

  28. Baikal, MediterraneanSea, South Pole GVD KM3NeT (ORCA) GNN DecaCube (PINGU)

  29. Rationale forthe multi-km³scale, South & North • Identifypointsources ! • Measuretheirspectrum ! • IceCubeisscratchingthepointsourcediscoveryregionatbest • Need larger detectors! (Howmuch larger?) • Detectors on the North and South lookto different partsofthesky(but withsomeoverlap!) • Can cover different partsofthespectraofthe same sources. • Iceandwaterhave different sytematics. Importantforflavorratiosandspectral form, in particularfor diffuse fluxes. This is „astronomy“

  30. Overview on high-energyprojects • KM3NeT: 6 x 0.6 km³ • Phase 1 (scale ~3 x ANTARES ): complete 2016, funded • Phase 1.5 (2 x 0.6 km³): complete 2020 positive signalsforfunding • Phase 2 (6 x 0.6 km³): completemid 2020s • DecaCube („IceCube High-Energyextension“, HEX) 5-10 km³ • Start 2018/19 ? • Complete 2027 ? Including PINGU withthe 3 firstofthe 8 seasons • Positive firstresponsesfrom NSF … • GVD (Baikal): 0.4 km³ • First of 10 clusters in early 2015 • Fullarray in 2020

  31. Gigaton Volume DetectorBaikal GVD

  32. State Marine U. Petersburg • JINR Dubna INR, MSU Moscow • Techn State U. Nizhni Novgorod • Irkutsk State University Germany: EvoLogicsGmbH ~ 50 authors, roleofDubnaincreasing SAC installed(Berezinsky, de Wolf, Gerhstein, Rubakov, Spiering, Spiro)

  33. Gigaton Volume Detector GVD >250 km3 0.4 to 1.5 km³ Detector in Lake Baikal

  34. Gigaton Volume Detector GVD Stage 1 • 10-12 clusters with 8 strings each • Cluster diameter 120 m • Height 375 m • Volume ~ 0.4 km³ • 24 OMs per string PMT Hamamatsu R7081-HQE  = 10” QE ~ 0.35%

  35. Prototype phase 2011-2015: demonstrationcluster „DUBNA“ • 192 OMs at 8 Strings • 2 Sections per String • 12 OMs per Section • DAQ-Center • Cable to Shore • Acoustic Positioning System • Instrumentation String with detector calibration and environment monitoring equipment • Active depth 950 – 1300 m Layout - 2014 L~ 345 m Buoy Station (BS) String section, 12 OMs Instrumentation string - Operating strings R ~ 60 m

  36. GVD timelinecumulativenumberofclusters vs. year 1 cluster = 8 strings = 192 PMT = 1 event (> 100TeV, cascade)/year Cost of the first cluster (“Dubna”): ~ 2.2 M€

  37. KM3NeT

  38. Fermi: encourages Northern detctors w.r.t galacticsources • Fermi LAT: “This detection provides direct evidence that cosmic-ray protons are accelerated in SNRs.” Science 339 (15-02-2013) 807–811 E2dN/dE [erg cm-2s-1] Eg [eV] Eg [eV]

  39. KM3NeT Distributed infrastructure - KM3NeT-France (Toulon) ~2500m - KM3NeT-Italy (Capo Passero) ~3400m - KM3NeT-Greece (Pylos) ~4500m Until 2016: construction of KM3NeT phase I detectors in France and Italy (~30 M€)

  40. KM3NeT • 6 building blocks, 2 per site. Overall volume ~ 4 km³ • 115 strings at 90 m distance • 18 OMs per string, 36 m vertical distance ~ 600 m 1 km

  41. Muon angular resolution KM3NeT

  42. Key elements Launcher vehicle • rapid deployment • autonomous unfurling • recoverable Optical module • 31 x 3” PMTs • low-power HV, LED • White Rabbi time synch.

  43. In-situ testwith prototype DOM 50 Atmospheric muons K40 random coincidences + data Atmospheric muons + data (M ≥ 7) shadowing Photon countingDirectionality 40 30 Rate [Hz] Rate [a.u.] 20 10 0 PMT orientation [deg.] Multiplicity

  44. Management • EU funded Design Study 2006–2009 • EU funded Preparatory Phase 2008–2012 • KM3NeT phase-1 2013–20XX • established collaboration • 40 institutes, more than 240 persons • elected central management • set up project organisation • prototyping, cost review, planning, QA/QC • drafted Memorandum of Understanding • investments, facilities, human resources, access policy • set up Resources Review Board • set up Scientific & Technical Advisory Committee • Technical design agreed technology is part of existing CDR and TDR • updates ongoing following PRRs

  45. Cost • Totalinvestment costs 220–250 M€ • conform with ESFRI roadmap (2006) and TDR (2010) • includes contingency of 10%, provided no VAT • Operational costs 3% of investment per year • Operation > 15 yearss • Cost of 1 string incl. PMT ~ 230 k€ + Interlink cables, deployment and connections ~ 90k€

  46. Summary on thephasesof KM3NeT

  47. South Pole

More Related