570 likes | 731 Views
Twist liquids and gauging anyonic symmetries. University of Illinois at Urbana-Champaign. Jeffrey C.Y. Teo. Xiao Chen Abhishek Roy Mayukh Khan. Collaborators: Taylor Hughes Eduardo Fradkin. To appear soon. Outline. Introduction Topological phases in (2+1)D
E N D
Twist liquids and gauging anyonic symmetries University of Illinois at Urbana-Champaign Jeffrey C.Y. Teo Xiao Chen Abhishek Roy Mayukh Khan Collaborators: Taylor Hughes Eduardo Fradkin To appear soon
Outline • Introduction • Topological phases in (2+1)D • Discrete gauge theories – toric code • Twist Defects (symmetry fluxes) • Extrinsicanyonic relabeling symmetry e.g. toric code– electric-magnetic duality so(8)1 – S3triality symmetry • Defect fusion category • Gauging (flux deconfinement) abelian states non-abelian states • From toric code to Ising • String-net construction • Orbifoldconstruction Gauge Z3 Gauge Z2
(2+1)D Topological phases • Featureless – no symmetry breaking • Energy gap • No adiabatic connection with trivial insulator • Long range entangled
“Topological order” • Ground state degeneracy = Number of quasiparticle types (anyons) Wen, 90
Fusion • Abelian phases quasiparticle labeled by lattice vectors
Fusion • Abelian phases quasiparticle labeled by lattice vectors • Non-abelian phases
Exchange statistics • Spin – statistics theorem Exchange phase = 360 twist =
Braiding • Unitary braiding • Ribbon identity Abelian topological states:
Bulk boundary correspondence • Topological order • Quasiparticles • Fusion • Exchange statistics • Braiding • Boundary CFT • Primary fields • Operator product expansion • Conformal dimension • Modular transformation
Toric code (Z2 gauge theory) • Ground state: Kitaev, 03; Wen, 03; for all r
Toric code (Z2 gauge theory) • Quasiparticle excitation at r Kitaev, 03; Wen, 03; e – type m – type
Toric code (Z2 gauge theory) • Quasiparticle excitation at r string of σ’s e – type m – type
Toric code (Z2 gauge theory) • Quasiparticles:1 = vacuum e = Z2 charge m= Z2flux ψ = e m • Braiding: • Electric-magnetic symmetry:
Discrete gauge theories • Finite gauge group G • Flux – conjugacy class • Charge – irreducible representation
Discrete gauge theories • Quasiparticle = flux-charge composite • Total quantum dimension Conjugacy class Irr. Rep. of centralizer of g topological entanglement entropy
Gauging - Gauging - Flux deconfinement Trivial boson condensate Discrete gauge theory - Charge condensation - Flux confinement Local dynamical symmetry Global static symmetry - Gauging - Defect deconfinement Less topological order (abelian) More topological order (non-abelian) - Charge condensation - Flux confinement JT, Hughes, Fradkin, to appear soon
Anyonic symmetry • Kitaev toric code = Z2 discrete gauge theory = 2D s-wave SC with deconfined fluxes • Quasiparticles:1 = vacuum e = Z2 charge = m ψ m= Z2flux = hc/2e ψ = e m = BdG-fermion • Braiding: • Electric-magnetic symmetry:
Twist defect • Majorana zero mode at QSHI-AFM-SC • “Dislocations” in Kitaevtoric code e m Vortex states H. Bombin, PRL 105, 030403 (2010) A. Kitaevand L. Kong, Comm. Math. Phys. 313, 351 (2012) You and Wen, PRB 86, 161107(R) (2012) Khan, JT, Vishveshwara, to appear soon
Twist defect • “Dislocations” in bilayer FQH states M. Barkeshli and X.-L. Qi, Phys. Rev. X 2, 031013 (2012) M. Barkeshli and X.-L. Qi, arXiv:1302.2673 (2013)
Twist defect • Semiclassical topological point defect
Non-abelian fusion Splitting state JT, A. Roy, X. Chen, arXiv:1306.1538; arXiv:1308.5984 (2013)
Non-abelian fusion JT, A. Roy, X. Chen, arXiv:1306.1538; arXiv:1308.5984 (2013)
so(8)1 • Edge CFT: so(8)1Kac-Moody algebra • Strongly coupled 8 (p+ip) SC • Surface of a topological paramagnet (SPT) condense Burnell, Chen, Fidkowski, Vishwanath, 13 Wang, Potter, Senthil, 13
so(8)1 • K-matrix = Cartan matrix of so(8) • 3 flavors of fermions • Mutual semions fermions
so(8)1 Khan, JT, Hughes, arXiv:1403.6478 (2014)
Defects in so(8)1 Twofold defect Threefold defect Khan, JT, Hughes, arXiv:1403.6478 (2014)
Defect fusions in so(8)1 Multiplicity Non-commutative Twofold defect Threefold defect Khan, JT, Hughes, arXiv:1403.6478 (2014)
Defect fusion category • G-graded tensor category • Toric code with defects Basis transformation JT, Hughes, Fradkin, to appear soon
Defect fusion category Fusion Basis transformation • Obstructed by • Classified by Abelian quasiparticles 3D SPT 2D SPT Frobenius-Shur indicators Non-symmorphic symmetry group JT, Hughes, Fradkin, to appear soon
From semiclassical defectsto quantum fluxes - Gauging - Defect deconfinement Global extrinsic symmetry Local gauge symmetry - Charge condensation - Flux confinement (Bais-Slingerland) JT, Hughes, Fradkin, to appear soon
Discrete gauge theories - Gauging - Defect deconfinement Trivial boson condensate Discrete gauge theory • Quasiparticle = flux-charge composite • Total quantum dimension - Charge condensation - Flux confinement Conjugacy class Representation of centralizer of g
General gauging expectations - Gauging - Defect deconfinement Less topological order (abelian) More topological order (non-abelian) • Quasipartice = flux-charge-anyon composite - Charge condensation - Flux confinement Super-sector of underlying topological state Conjugacy class Representation of centralizer of g JT, Hughes, Fradkin, to appear soon
Toric code Ising Z2 gauge theory IsingIsing • Edge theory e condensation c = 1 c = 1 m condensation Kitaevtoric code c = 1/2 c = 1/2
Toric code Ising Gauging fermion parity Z2 gauge theory IsingIsing • DIII TSC:(pip) (pip) + SO coupling with deconfined full flux vortex Toric code m = vortex ground state e= vortex excited state ψ= e m = BdG fermion
Toric code Ising Gauging fermion parity Z2 gauge theory IsingIsing • DIII TSC:(pip) (pip) + SO coupling with deconfined full flux vortex Half vortex = Twist defect Gauge FP Isinganyon
Toric code Ising Z2 gauge theory IsingIsing - Fermion pair condensation - Isinganyon confinement condense confine
Toric code Ising - Gauging e-m symmetry - Defect deconfinement Z2 gauge theory IsingIsing • General gauging procedure • Defect fusion category + F-symbols • String-net model (Levin-Wen) a.k.a. Drinfeld construction JT, Hughes, Fradkin, to appear soon
Toric code Ising - Gauging e-m symmetry - Defect deconfinement Z2 gauge theory IsingIsing • Drinfeldanyons Defect fusion object Exchange JT, Hughes, Fradkin, to appear soon
Toric code Ising - Gauging e-m symmetry - Defect deconfinement Z2 gauge theory IsingIsing • Drinfeldanyons Z2 charge JT, Hughes, Fradkin, to appear soon
Toric code Ising - Gauging e-m symmetry - Defect deconfinement Z2 gauge theory IsingIsing • Drinfeldanyons Z2 fluxes 4 solutions: JT, Hughes, Fradkin, to appear soon
Toric code Ising - Gauging e-m symmetry - Defect deconfinement Z2 gauge theory IsingIsing • Drinfeldanyons Super-sector JT, Hughes, Fradkin, to appear soon
Toric code Ising - Gauging e-m symmetry - Defect deconfinement Z2 gauge theory IsingIsing • Total quantum dimension (topological entanglement entropy) JT, Hughes, Fradkin, to appear soon
Gauging multiplicity - Gauging e-m symmetry - Defect deconfinement Z2 gauge theory IsingIsing • InequivalentF-symbols Frobenius-Schur indicator JT, Hughes, Fradkin, to appear soon
Gauging multiplicity - Gauging e-m symmetry - Defect deconfinement Z2 gauge theory IsingIsing Spins of Z2 fluxes JT, Hughes, Fradkin, to appear soon
Gauging multiplicity - Gauging e-m symmetry - Defect deconfinement Z2 gauge theory IsingIsing Spins of Z2 fluxes JT, Hughes, Fradkin, to appear soon
Gauging triality of so(8)1 Gauge Z2 Gauge Z2 JT, Hughes, Fradkin, to appear soon
Gauging triality of so(8)1 Gauge Z3 JT, Hughes, Fradkin, to appear soon