840 likes | 854 Views
Neutrino Masses, Double Beta Decay and Nuclear Structure. ECT*(Trento), Doctoral Training Program on “Neutrinos in Nuclear, Particle- and Astrophysics”. Amand Faessler, University of Tuebingen, www.uni-tuebingen.de/faessler/. CONTENTS: 0. History of the Neutrinos (Introduction)
E N D
Neutrino Masses, Double Beta Decay and Nuclear Structure ECT*(Trento), Doctoral Training Program on “Neutrinos in Nuclear, Particle- and Astrophysics”. Amand Faessler, University of Tuebingen, www.uni-tuebingen.de/faessler/
CONTENTS: 0. History of the Neutrinos (Introduction) 1. Neutrino Properties 2. The See-Saw Model 3. The Single Beta Decay 4. The Neutrinoless Double Beta Decay 5. The Quasi-Particle Random Phase Approximation (QRPA) 6. Comparison of QRPA, Shell Model, Projected Hartree Fock Bogoliubov (PHBF), Interacting Boson Model 2 7. Can one measure with Charge Transfer Reactions the 0nbb-Matrix element? 8. Competing Mechanisms for the 0nbb 9. The Heidelberg-Moscow data and the Neutrino Mass FAESSLER; Trento 2011
0. History of the Neutrinos • 1930 Pauli‘s invention of the neutrino • 1955 Reines and Cowen detection of the electron neutrino ne • 1962 Brookhaven; detection of muon neutrino nm • 2000 Fermi Lab; detection of tau neutrino nt • 1935 Göttingen, thesis of Maria Goeppert-Mayer theory of 2nbb decay • 1986 Santa Barbara (Caldwell) detection of 2nbb. • 20xx Detection of 0nbb decay ? FAESSLER; Trento 2011
Sehr geehrte radioaktiven Damen und Herren: Invention of the Neutrino in a letter from Zuerich to Tuebingen on December 4th, 1930: Conservation of Energy and Angular momentum. FAESSLER; Trento 2011
History of the Neutrinos • 1930 Pauli‘s invention of the neutrino • 1955 Reines and Cowen detection of the electron neutrino ne • 1962 Brookhaven; detection of muon neutrino nm • 2000 Fermi Lab; detection of tau neutrino nt • 1935 Göttingen, thesis of Maria Goeppert-Mayer theory of 2nbb decay • 1986 Santa Barbara detection of 2nbb decay • 20xx Detection of 0nbb decay ? FAESSLER; Trento 2011
Reines and Cowen at the Neutrino-Experiment (at Savannah River Reactor) Fissions of 23592 Uranium143 produces neutron rich fragments. Beta decay: n p + e- + nec FAESSLER; Trento 2011
History of the Neutrinos • 1930 Pauli‘s invention of the neutrino • 1955 Reines and Cowen detection of the electron neutrino ne • 1962 Brookhaven; detection of muon neutrino nm p- m- + ncm; ncm + p n + m+ (no: e+) • 2000 Fermi Lab; detection of tau neutrino nt • 1935 Göttingen, thesis of Maria Goeppert-Mayer theory of 2nbb decay • 1986 Santa Barbara: 2nbb decay by Caldwell • 20xx Detection of 0nbb decay ? FAESSLER; Trento 2011
1. Neutrino properties: What is the Mass of the Neutrino ? • mne Mass measurement in the single beta decay • nm and nt ? • Si mni from cosmology • mnefrom the neutrinoless double beta decay FAESSLER; Trento 2011
antineutrino For the Triton FAESSLER; Trento 2011 Te [keV] (Te - Q) [eV]
Mass of the Electron Neutrino?Tritium decay (Mainz + Troitsk) With: FAESSLER; Trento 2011
Upper Limit of the Neutrino Mass: < (2.2 eV)2 ; 95% conf. limit 5 % 95 % (2.2 eV)2 0 mnb2 FAESSLER; Trento 2011
A dinosaur on trip KATRIN Spectrometer tank on the way from the Rhine to the FZ Karslsruhe FAESSLER; Trento 2011
Mass of nm (Paul Scherrer Institut 1996): FAESSLER; Trento 2011
Mass of tau Neutrino ARGUS (DESY Hamburg) e+ + e- t+ + t-; mnt < 28 MeV by ALEPH mnt < 15 MeV together FAESSLER; Trento 2011
Neutrino Mass from Astrophysics: Density Distribution of Matter in the Universe (Power Spectrum of Matter Distribution) Hubble law: v = H0 *Distance = h*100 [km/(sec*Mpc)] *Distance [Mpc] = 71[km/(sec*Mpc)]*Distance [Mpc]; h=0.71; Hubble Constant: H0 = 71 [km/sec*Mpc] FAESSLER; Trento 2011
k = 2p/l [(h=0.71)/ Mpc] FAESSLER; Trento 2011
W0 = 1.0 WL= 0.66Wb= 0.04H0 = 72 ns = 0.94 Wn = 0 0.01 FAESSLER; Trento 2011
W0 = 1.0 WL= 0.66Wb= 0.04H0 = 72 ns = 0.94 Wn = 0.05 0.01 FAESSLER; Trento 2011
W0 = 1.0 WL= 0.66Wb= 0.04H0 = 72 ns = 0.94 Wn = 0.25 0.01 FAESSLER; Trento 2011
WMAP = Wilkinson Microwave Anisotropy Probe. • ACBAR = Arcminute Cosmology Bolometer Array Receiver (Berkeley) • CBI = Cosmic Background Imager (CALTEC) • 2dFGRS = 2 degree Field Galaxy Redshift Survey FAESSLER; Trento 2011
Page 1 FAESSLER; Trento 2011
2. The See-Saw Model Diagonalise the matrix: FAESSLER; Trento 2011
3. The Single Beta Decay p e nc p e -1/( MW2 )d(r12) W- 1/(q2 – MW2 ) n n n FAESSLER; Trento 2011
Page 17 FAESSLER; Trento 2011
4. Neutrino Mass from Neutrinoless Double Beta Decay • The neutrinoless Double Beta Decay is forbidden in the Standard Model. Allowed in GUT‘s and SUSY. It determines the absolute mass of Majorana Neutrinos. • Matrix elements as important as the data. • Practically all Grand Unified Theories and Supersymmetry request massive Majorana Neutrinos FAESSLER; Trento 2011
Oνββ-Decay (forbidden in Standard Model) only formassive MajoranaNeutrinos ν = νc P P Left ν Phase Space 106x2νββ Left n n FAESSLER; Trento 2011
GRAND UNIFICATION Left-right Symmetric Models SO(10) Majorana Mass: FAESSLER; Trento 2011
P P ν e- e- ν L/R l/r 2*2*2 = 8 posibilities n n FAESSLER; Trento 2011
p p e- e- n n L/R l/r W n n P light ν heavy N Neutrinos P ν l/r n l/r 8x8x2 = 128 contributions n FAESSLER; Trento 2011
Theoretical Description of Nuclei: Vadim Rodin, Fedor Simkovic, Amand Faessler, Saleh Yousef, D.-L. Fang P k 0+ P e2 k 1+ e1 k 2- ν Ek n n Ei 0+ 0+ 0νββ FAESSLER; Trento 2011
Neutrinoless Double Beta- Decay Probability FAESSLER; Trento 2011
5. The best choice: Quasi-Particle Random Phase Approximation (QRPA) and Shell Model QRPA starts with Pairing: FAESSLER; Trento 2011
Effective Majorana Neutrino-Mass for the 0nbb-Decay Tranformation from Mass to Flavor Eigenstates CP Time reversal CPT = I FAESSLER; Trento 2011
Page 25b FAESSLER; Trento 2011
2011 FAESSLER; Trento 2011
From Dirac to Majorana Neutrinos DIRAC NEUTRINOS: Majorana Neutrinos: FAESSLER; Trento 2011
Neutrino Masses • Single Beta Decay (Mainz, Troisk) • Double Beta Decay Majorana Mass (Tübingen): • Astophysics: S = m1 + m2 + m3 < 0.17 to 2.0 [eV] Depends on Cosmological models (Hannestad) < 2.2 [eV] < 0.27 [eV] FAESSLER; Trento 2011
Page 26 FAESSLER; Trento 2011
PMNS-Matrix Parameters 2011 Pontecorvo-Maki-Nakagawa-Sakata • Solar: • Atmospheric: • Reactor FAESSLER; Trento 2011
Results from Oscillations: No Hierarchy, no absolute Mass Scale (Bild) Fogli, Lisi, Marrone, Palazzo: Prog. Part. Nucl. Phys. 57(2006)742; Data 2011 Sequence 1-2 fixed by oscillations in the sun and in vacuum. No oscillations 13 for solar neutrinos observed,
Effective Majorana Neutrino-Mass for the 0nbb-Decay Tranformation from Mass to Flavor Eigenstates CP Time reversal CPT = I CP = T= K FAESSLER; Trento 2011
Normal Hierarchy: Double Beta Decay Majorana Mass mbb versus lowest mass m1
Inverted Hierarchy: Double Beta Decay Majorana Mass mbb versus lowest mass m3 FAESSLER; Trento 2011
6. Different Methods for the 0nbb-Matrix Elements for the Light Majorana Neutrino Exchange.A. Escuderos, A. Faessler, V. Rodin, F. Simkovic, J. Phys. G37 (2010) 125108; arXiv: 1001.3519 [nucl-th] • Quasi-Particle Random Phase Approximation (QRPA; Tübingen). • Shell Model (Strasbourg-Madrid). • Angular Momentum Projected Hartee-Fock-Bogoliubov (Tuebingen; P. K. Rath et al.). • Interacting Boson Model (Barea and Iachello). Amand Faessler, Tuebingen
Neutrinoless Double Beta- Decay Probability FAESSLER; Trento 2011
QRPA all the Ring diagrams: Ground State (Exercise IV.5): 0, 4, 8, 12 , … quasi- particles (seniority) b) The Shell Model Ground state: 0, 4, 6, 8, …. Problem for SM: Size of the Single Particle Basis. Amand Faessler, Tuebingen
Additive Contributions of 0, 4, 6, … Quasi-Particle States in the SM (Poves et al.). 128Te Not in QRPA 82Se Increasing Admixtures in the Ground State Amand Faessler, Tuebingen