1 / 7

Consideremos dos rectas coplanares r y r’

Teorema de Thales. Consideremos dos rectas coplanares r y r’. r. r’. Teorema de Thales. Sean a, b, c y d rectas paralelas. a. b. c. d. r’. r. Teorema de Thales. a. A’. b. Consideremos:. A. B’. B. c. C’. d. D’. C. r’. D. r. AB. A’B’. CD. C’D’. Teorema de Thales.

karif
Download Presentation

Consideremos dos rectas coplanares r y r’

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Teorema de Thales Consideremos dos rectas coplanares r y r’ r r’

  2. Teorema de Thales Sean a, b, c y d rectas paralelas a b c d r’ r

  3. Teorema de Thales a A’ b Consideremos: A B’ B c C’ d D’ C r’ D r

  4. AB A’B’ CD C’D’ Teorema de Thales a A’ Entonces se cumple que: A b B’ = B c C’ d D’ C r’ D r

  5. A(AB’C) A(ABC’) A(AB’C’) A(AB’C’) AC.h2.0,5 AB.h1.0,5 AC’.h2.0,5 AB’.h1.0,5 AC AB AC’ AB’ r Caso particular tienen igual área y (B’C’C) Los triángulos: (B’C’B) = Entonces tenemos que: En consecuencia: = Cancelando: A h2 h1 B’ = C’ B C

  6. = = AC BC AB B’C’ AC’ AB’ Teorema de Thales en triángulos Tesis: Hipóesis: • (ABC) • B’Î AB, C’Î AC • con B’C’//BC A B’ C’ B C

  7. JC=B’C’ = = BC BC AB AB B’C’ AB’ AB’ JC r Teorema de Thales en triángulos Demostración: Consideremos r paralela a AC por B’, que corta a BC en J Como B’J//AC Þ (*) Por lo demostrado en el caso particular Como (B’C’CJ) es un paralelogramo Þ (**) A De (*) y (**) se desprende: B’ C’ B J C

More Related