600 likes | 754 Views
WP 2. HYDROL. WP2. HYDROL - Surface and groundwater hydrology. Associated processes at different scales. Presentation about: work done and work to do in the next future. Three major tasks:
E N D
WP 2. HYDROL WP2. HYDROL - Surface and groundwater hydrology. Associated processes at different scales. Presentation about: work done and work to do in the next future
Three major tasks: i) To analyze the impact of the interaction processes in water interfaces (water and sediments accumulated in dams, river beds, hyporreic zone, infiltration ponds,…) on water quality in the study basins ii) To characterize the effects of artificial recharge operations on water quality iii) To determine the likelihood of chemical compounds to reach the water bodies in concentrations exceeding a given threshold. TASKS
The boundary conditions… D2.1. Characterization of processes taking place at the different interfaces within water bodies, with emphasis on reactive transport development (UPC) (month 18). Training activity: Managed artificial recharge for sustainable water management under varying climate conditions: quantitative and qualitative aspects. Organized by UPC in collaboration with UPM and IDAEA-CSIC. • So, first processes; then applications to the sites
DOC NO3 LDet NO2 a) Alk DCF b) SMX DCF c) SMX 0.1 Figure 1: results for “Experiment 1” (individual pollutant at initial concentration of 1microg/L ). a) chemical evolution with time in the biotic NO3-reducing experiment; b) evolution with time of the average normalized concentration (with respect to the initial value C0) of diclofenac (DCF) and sulfamethoxazole (SMX) in the biotic test. “LDet” stays for Limit of Determination; c) idem in the abiotic test.
DOC NO3 Alk a) NO2 DCF b) APP SMX SMX DCF APP c) Figure 2: results for “Experiment 2” (individual pollutant at initial concentration of 1mg/L ). a) chemical evolution with time in the biotic NO3-reducing experiment; b) evolution with time of the average normalized concentration (with respect to the initial value C0) of Acetaminophen (APP), DCF and SMX in the biotic test. “ c) idem in the abiotic test.
a) b) c) d) Figure 3: Evolution of DCF, Nitro-DCF (NO2-DCF), and nitrite in the biotic series of “Experiment 1” (plot “a)”) and “Experiment 2” (plot “b”). Evolution of SMX, 4-Nitro-SMX (4-NO2-SMX), and nitrite in the biotic series of “Experiment 1” (plot “c)”) and “Experiment 2” (plot “d”).
Fate of micropollutants: real site (UPC + IDAEA) • Based on column experiments • Artificial recharge facility • Organic matter layer: 60 cm of compost + natural soil (40 % – 60%) • Plus some iron hydroxide • The test has just started…
Biofilm transient impact upon recharge/ clogging (UPC + ICRA) • Soil wetting and feeding • Biofilm development • Biofilm • Dessication /scrubbing • Soil rewetting
Sensor and experimental set up Coarse and sandy soil collected from the pound in 3 locations Tank to couple hydrology and biology
Abiotic measurments • Soil moisture, EC and temperature • Water flow • Water suction
Biotic measurments • Microlysimeter, collection of liquid samples • Dissolved oxygen, conductivity, pH/ORP nitrate, chloride and temperature • Eventuallyplanaroctopodestomeasureoxygen • Imagingsurface
Processes: facies delineation/reconstruction • Very similar to CSI • With little (to no) information, reconstruct as best as possible the undersampled formation
Modelling efforts on reactive transport (UPC+ UPM) • Tool development, to be started soon
Realization 1 Realización 2 Realización 3 Original figure. Selection of 10 random samples Realización 50 Realización 100
Realización 1 Realización 2 Realización 3 Realización 50 Realización 100 Figura original Classsical Kernel Regression Orden 2 CKR2 (Iteración 0)
Realización 1 Realización 2 Realización 3 Realización 50 Realización 100 Steering Kernel Regression Orden 2 SKR2 (Iteración 1) Figura original
Realización 1 Realización 2 Realización 3 Realización 50 Realización 100 Steering Kernel Regression Orden 2 SKR2 (Iteración 2) Figura original
ARTIFICIAL RECHARGE ACTIVITIES Infiltrómetro de “Doble Anillo” En superficie En zanjas
Sitio de estudio en Sant Vicenç dels Horts: Ensayos puntuales para la medición del capacidad de infiltración de la superficie de la balsa II. Interpretación
Sitio de estudio en Sant Vicenç dels Horts: Ensayos puntuales para la medición del capacidad de infiltración de la superficie de la balsa III. Resultados
Sitio de estudio en Sant Vicenç dels Horts: Mapa de variabilidad espacial de los parámetros físicos y hidráulicos en la superficie de la balsa de infiltración (SIP)
Sitio de estudio en Sant Vicenç dels Horts: Resultados de un ensayo de inundación
Sitio de estudio en Sant Vicenç dels Horts: Estado de la balsa antes del ensayo de infiltración
Sitio de estudio en Sant Vicenç dels Horts: Estado de la balsa durante el ensayo Colmatación por error humano («human failure») Error de cálculo, diseño, aleatoriedad de estabilidad de las estructuras, eventos extremos, vandalismo, …
Sitio de estudio en Sant Vicenç dels Horts: Estado de la balsa después del ensayo de infiltración Colmatación por efectos naturales Crecimiento de algae, trapping de coloides, sedimentación de material fino en suspencion, precipitacíon de minerales , …
EFFECTIVE PARAMETERS Model: I = I_0exp(- λe t) + (I_R-I_0)
Sitio de estudio en Sant Vicenç dels Horts: Oscilaciones de la temperatura y su relación con el gradiente hidráulico
Illustration of the Process 1) Identifying contaminant source releases & environmentally sensitive targets. 2) Data acquisition used to infer modeling parameters! Site characaterization. 3) Final task: Estimate human health risk toward decision making! Should a site be remediated or not? Is the exposed population at risk?
PWijp FATijp System Failure SF OR Critical Concentrations CC11 CC12 CCij CCnm AND Sources-Receptors CSi PRj OR AND AND AND Pathways-Processes
Sources-Receptors CSi PRj AND Observation wells WELL1 WELLk WELLnw OR AND AND Pathways-Processes BPijk FATijk BPijk FATijk OR OBSk SAijk
Computation of probabilities for a monitoring system of two wells:
Evolution of Risk with time T: The most sensitive failure mode is the occurrence of simultaneous small sampling frequency
NAPLs: Non-Aqueous Phase Liquids APPLICATIONS?so far NAPLs? • Fluids capable to stay in the subsurface in a different (non-aqueous) phase thanks to its low solubility • LNAPLs (gasoline and other Hydrocarbons) density below water density • DNAPLs (Chlorinated solvents) density higher than water
Failure of Remediation RISK AFTER REMEDIATION C END-POINT Time
Vapor flux Dissolved plume PROBLEM STATEMENT EVALUATE THE RISK IS DIFFICULT DUE TO: MANY PATHS, PROCESSES, RECEPTORS, SOURCES, SAMPLING, OBSERVATION PATH 4 PATH 3 PATH 2 PATH 1
Failure due to Sampling Frequency C OBS RECEPTOR time SOURCE ZONE OBS RECEPTOR DNAPL
Failure due to Bypassing C RECEPTOR OBS time SOURCE ZONE OBS RECEPTOR DNAPL
Fate and transport • We need a transport model or a set of transport models to generate a large number of replicates of the system based on some uncertain parameters
Model Parameters OBSERVATIONS RECEPTOR CONTAMINATED SITE