1 / 12

In the skateboard design, VW bisects XY at point T , and XT = 39.9 cm . Find XY .

Skateboard. In the skateboard design, VW bisects XY at point T , and XT = 39.9 cm . Find XY. Point T is the midpoint of XY . So , XT = TY = 39.9 cm. EXAMPLE 1. Find segment lengths. SOLUTION. XY = XT + TY. Segment Addition Postulate. = 39.9 + 39.9. Substitute. = 79.8 cm.

kawena
Download Presentation

In the skateboard design, VW bisects XY at point T , and XT = 39.9 cm . Find XY .

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Skateboard In the skateboard design, VWbisects XYat point T, and XT=39.9cm. Find XY. Point Tis the midpoint of XY . So, XT = TY = 39.9cm. EXAMPLE 1 Find segment lengths SOLUTION XY = XT + TY Segment Addition Postulate = 39.9 + 39.9 Substitute. = 79.8cm Add.

  2. ALGEBRA Point Mis the midpoint of VW. Find the length of VM . STEP 1 Write and solve an equation. Use the fact that VM = MW. EXAMPLE 2 Use algebra with segment lengths SOLUTION VM= MW Write equation. 4x–1= 3x + 3 Substitute. x – 1 = 3 Subtract 3xfrom each side. x = 4 Add 1 to each side.

  3. STEP 2 Evaluate the expression for VMwhen x =4. So, the length of VMis 15. Check: Because VM = MW, the length of MWshould be 15. If you evaluate the expression for MW, you should find that MW = 15. MW = 3x + 3 = 3(4) +3 = 15 EXAMPLE 2 Use algebra with segment lengths VM = 4x – 1 = 4(4) – 1 = 15

  4. In Exercises 1 and 2, identify the segment bisectorof PQ . Then find PQ. 1. ANSWER MN; 3 3 4 for Examples 1 and 2 GUIDED PRACTICE

  5. In Exercises 1 and 2, identify the segment bisectorof PQ . Then find PQ. 2. 5 ANSWER line l ; 11 7 for Examples 1 and 2 GUIDED PRACTICE

  6. a.FIND MIDPOINTThe endpoints ofRSare R(1,–3) and S(4, 2). Find the coordinates of the midpoint M. EXAMPLE 3 Use the Midpoint Formula

  7. SOLUTION 1 , – , M M = 2 5 a.FIND MIDPOINTUse the Midpoint Formula. 2 The coordinates of the midpoint Mare 1 5 – , 2 2 ANSWER – 3 + 2 1 + 4 2 2 EXAMPLE 3 Use the Midpoint Formula

  8. b.FIND ENDPOINTThe midpoint of JKis M(2, 1). One endpoint is J(1, 4). Find the coordinates of endpoint K. EXAMPLE 3 Use the Midpoint Formula

  9. STEP 1 Find x. STEP 2 Find y. 4+ y 1+ x 1 2 = = 2 2 ANSWER The coordinates of endpoint Kare (3, – 2). EXAMPLE 3 Use the Midpoint Formula SOLUTION FIND ENDPOINTLet (x, y) be the coordinates of endpoint K. Use the Midpoint Formula. 4 + y = 2 1 + x = 4 y =–2 x =3

  10. 3. The endpoints of ABare A(1, 2) andB(7, 8). Find the coordinates of the midpoint M. ANSWER (4,5) 4. The midpoint of VWis M(– 1, – 2). One endpoint is W(4, 4). Find the coordinates of endpoint V. ANSWER (– 6, – 8) for Example 3 GUIDED PRACTICE

  11. In the diagram at the right, YWbisects XYZ, and mXYW = 18. Find m XYZ. o By the Angle Addition Postulate, m XYZ =mXYW + m WYZ. BecauseYW bisects XYZyou know thatXYW WYZ. So, m XYW = m WYZ, and you can write m XYZ = m XYW + m WYZ = 18° + 18° = 36°. ~ EXAMPLE 5 Double an angle measure SOLUTION

  12. ANSWER 90° for Example 5 GUIDED PRACTICE 7. Angle MNPis a straight angle, and NQbisects MNP. Draw MNP And NQ. Use arcs to mark the congruent angles in your diagram, and give the angle measures of these congruent angles.

More Related