250 likes | 544 Views
BAGIAN– 6 ANALISIS RUNTUT WAKTU. 1. Pengertian Runtut Waktu ( Time Series) 2. Komponen Time Series 3. Analisis Pola Perubahan Variabel. Pengertian TIME SERIES. Time series is a set (or series) of numerical values of a particular variable listed in chronological order
E N D
BAGIAN– 6ANALISIS RUNTUT WAKTU 1. Pengertian Runtut Waktu (Time Series) 2. Komponen Time Series 3. Analisis Pola Perubahan Variabel
Pengertian TIME SERIES • Time series is a set (or series) of numerical values of a particular variable listed in chronological order • Alasan mempelajari data time series - mengetahui pola perubahan nilai variabel pada masa lalu - berdasarkan pola perubahan nilai variabel pada masa lalu dilakukan peramalan nilai variabel pada masa yang akan datang Statistika I: Analisis Runtut Waktu
Komponen Time Series • Secular Trend (Long-term Trend) - T • Seasonal Variations (Seasonal Effect) - S • Cyclical Fluctuations (Cyclical Effect) - C • Irregular Movements (Random Variation) - I Total pengaruh: Y = T x S x C x I Statistika I: Analisis Runtut Waktu
Secular Trend (Long-term Trend) • Bentuk umum persamaan trend: Y = a + bX Y: variabel yang diamati a: nilai Y pda tahun dasar (intersep) b: perubahan nilai Y per periode (slope) X: waktu Statistika I: Analisis Runtut Waktu
LANJUTAN … • Metode menentukan Persamaan Trend: • Metode Tangan Bebas (Free Hand Method) • Metode Semi Rata-rata (Semi Average Method) • Metode Kuadrat Terkecil (Least Square Method) Statistika I: Analisis Runtut Waktu
CONTOH MENENTUKANPERSAMAAN TREND Statistika I: Analisis Runtut Waktu
Free-hand Method Prod. (Y) 50 40 30 20 10 0 2000 ‘ 01 ’02 ’03 ’04 ’05 Tahun (X) Y X Statistika I: Analisis Runtut Waktu
LANJUTAN …. • Misalnya dari ganbar tersebut: • Garis memotong sumbu pada 10 • Y/X = 4 • Maka persamaan tend-nya adalah Y = 10 + 4X Statistika I: Analisis Runtut Waktu
Grafik Produksi Statistika I: Analisis Runtut Waktu
METODE SEMI RATA-RATA • Membuat persamaan trend dengan membagi data menjadi dua kelompok data. Kemudian masing-masing bagian dihitung rata-ratanya. • Slope (b) persamaan trend adalah perubahan per tahun dari rata-rata kelompok data pertama sampai dengan rata-rata kelompok data kedua. • Persamaan trend yang menggunakan rata-rata kelompok pertama sebagai konstanta (a) adalah persamaan trend dengan tahun dasar tahun pada rata-rata pertama. • Persamaan trend yang menggunakan rata-rata kelompok kedua sebagai konstanta (a) adalah persamaan trend dengan tahun dasar tahun pada rata-rata kedua. Statistika I: Analisis Runtut Waktu
Contoh Kasus • Berikut ini data produksi tahun 2000-2005. Buatlah persamaan trend dengan menggunakan metode semi rata-rata. Kemudian gunakan persamaan trend tersebut untuk meramal produksi tahun 2006 – 2010. Statistika I: Analisis Runtut Waktu
JAWABAN KASUSSEMI AVERAGE METHOD Tahun Produksi (Y) Semi Rata-rata Slope 2000 6 2001 18 48/3 = 16 2002 24 2003 32 2004 30 102/3 = 34 2005 40 Pers. Trend thn. Dasar 2001: Y = 16 + 6X 18/3 = 6 Statistika I: Analisis Runtut Waktu
LANJUTAN … Tahun dasar tahun 2001: Y = 16 + 6X Y = 16 + 6(5) = 46 Statistika I: Analisis Runtut Waktu
LANJUTAN … Tahun dasar tahun 2004: Y = 34 + 6X Y = 34 + 6(2) = 46 Statistika I: Analisis Runtut Waktu
METODE KUADRAT TERKECIL (Least Square Method ) • Formulasi untuk menentukan a dan b pada persamaan trend Y = a + bX adalah Formula jika X = 0 Statistika I: Analisis Runtut Waktu
Contoh Kasus least square Berikut ini data produksi tahun 2000-2006. Buatlah persamaan trend dengan menggunakan metode semi rata-rata. Kemudian gunakan persamaan trend tersebut untuk meramal produksi tahun 2007 – 2010. Statistika I: Analisis Runtut Waktu
JAWABAN KASUS LEAST SQUARE Tahun dasar = Tahun 2000 b = 6 a = 9,71 Persamaan trend: Y = 9,71 + 6X Statistika I: Analisis Runtut Waktu
RAMALAN Y TAHUN 2007-2010 Y = 9,71 + 6( 7 ) = 51,71 Statistika I: Analisis Runtut Waktu
LANJUTAN … Tahun dasar = Tahun 2003 b = 6 a = 27,71 Persamaan trend: Y = 27,71 + 6X Statistika I: Analisis Runtut Waktu
LANJUTAN … Y = 27,71 + 6( 4 ) = 51,71 Statistika I: Analisis Runtut Waktu
SEASONAL VARIATION • Identifikasi terhadap perubahan nilai variabel yang disebabkan oleh perubahan musim • Tenggang waktu perubahan lebih pendek drpd trend (mis. Bulanan, kuartalan, semesteran) • Ramalan nilai variabel menggunakan indeks musiman Statistika I: Analisis Runtut Waktu
AVERAGE METHOD Bulan Produksi IM Januari 22 (22/57,1) x 100 = 38,51 Februari 38 (38/57,1) x 100 = 66,55 Maret 60 105,10 April 34 59,54 Mei 46 80,56 Juni 73 127,85 Juli 64 120,08 Agustus 85 148,86 September 61 106,83 Oktober 79 138,35 Nopember 40 70,05 Desember 82 143,61 TOTAL 685 RATA-RATA (685/12) = 57,1 Statistika I: Analisis Runtut Waktu
MOVING AVERAGE METHOD Bulan Produksi Rata-rata IM Januari 22 - - Februari 38 120/3 = 40 (38/40) x 100 = 95,0 Maret 60 132/3 = 44 (60/44) x 100 = 136,4 April 34 50 (34/50) x 100 = 68,0 Mei 46 51 = 90,2 Juni 73 61 = 119,7 Juli 64 74 = 86,5 Agustus 85 70 = 121,4 September 61 75 = 81,3 Oktober 79 60 = 131,7 Nopember 40 67 = 59,7 Desember 82 - - Statistika I: Analisis Runtut Waktu