1 / 20

Metal-ligand s interactions in an octahedral environment

Metal-ligand s interactions in an octahedral environment. Six ligand orbitals of s symmetry approaching the metal ion along the x,y,z axes. We can build 6 group orbitals of s symmetry as before and work out the reducible representation. s.

kelly-cox
Download Presentation

Metal-ligand s interactions in an octahedral environment

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Metal-ligand s interactions in an octahedral environment Six ligand orbitals of s symmetry approaching the metal ion along the x,y,z axes We can build 6 group orbitals of s symmetry as before and work out the reducible representation

  2. s If you are given G, you know by now how to get the irreducible representations G = A1g + T1u + Eg

  3. Now we just match the orbital symmetries s

  4. anti bonding “metal character” non bonding 12 s bonding e “ligand character” “d0-d10 electrons” 6 s ligands x 2e each

  5. Introducing π-bonding 2 orbitals of π-symmetry on each ligand We can build 12 group orbitals of π-symmetry

  6. Gπ = T1g + T2g + T1u + T2u The T2g will interact with the metal d t2g orbitals. The ligand pi orbitals do not interact with the metal eg orbitals. We now look at things more closely.

  7. Anti-bonding LUMO(π) First, the CN- ligand

  8. Some schematic diagrams showing how p bonding occurs with a ligand having a d orbital (such as in P), or a p* orbital, or a vacant p orbital.

  9. anti bonding “metal character” non bonding 12 s bonding e “ligand character” ML6s-only bonding “d0-d10 electrons” The bonding orbitals, essentially the ligand lone pairs, will not be worked with further. 6 s ligands x 2e each

  10. Do Do has increased D’o Stabilization π-bonding may be introduced as a perturbation of the t2g/eg set: Case 1 (CN-, CO, C2H4) empty π-orbitals on the ligands ML π-bonding (π-back bonding) These are the SALC formed from the p orbitals of the ligands that can interac with the d on the metal. t2g (π*) t2g eg eg t2g t2g (π) ML6 s-only ML6 s + π (empty π-orbitals on ligands)

  11. D’o Do has decreased Do Destabilization Stabilization π-bonding may be introduced as a perturbation of the t2g/eg set. Case 2 (Cl-, F-) filled π-orbitals on the ligands LM π-bonding eg eg t2g (π*) t2g t2g t2g (π) ML6 s-only ML6 s + π (filled π-orbitals)

  12. Strong field / low spin Weak field / high spin Putting it all on one diagram.

  13. Spectrochemical Series Purely s ligands: D: en > NH3 (order of proton basicity) • donating which decreases splitting and causes high spin: • D: H2O > F > RCO2 > OH > Cl > Br > I (also proton basicity) p accepting ligands increase splitting and may be low spin D: CO, CN-, > phenanthroline > NO2- > NCS-

  14. Merging to get spectrochemical series CO, CN- > phen > en > NH3 > NCS- > H2O > F- > RCO2- > OH- > Cl- > Br- > I- Weak field, p donors small D high spin Strong field, p acceptors large D low spin s only

  15. Turning to Square Planar Complexes Most convenient to use a local coordinate system on each ligand with y pointing in towards the metal. py to be used for s bonding. z being perpendicular to the molecular plane. pz to be used for p bonding perpendicular to the plane, p^. x lying in the molecular plane. px to be used for p bonding in the molecular plane, p|.

  16. ML4 square planar complexes ligand group orbitals and matching metal orbitals s bonding p bonding (in) p bonding (perp)

  17. Sample π- bonding ML4 square planar complexes MO diagram eg s-only bonding

  18. Angular Overlap Method An attempt to systematize the interactions for all geometries. The various complexes may be fashioned out of the ligands above Linear: 1,6 Trigonal: 2,11,12 T-shape: 1,3,5 Square pyramid: 1,2,3,4,5 Octahedral: 1,2,3,4,5,6 Tetrahedral: 7,8,9,10 Square planar: 2,3,4,5 Trigonal bipyramid: 1,2,6,11,12

  19. Cont’d All s interactions with the ligands are stabilizing to the ligands and destabilizing to the d orbitals. The interaction of a ligand with a d orbital depends on their orientation with respect to each other, estimated by their overlap which can be calculated. The total destabilization of a d orbital comes from all the interactions with the set of ligands. For any particular complex geometry we can obtain the overlaps of a particular d orbital with all the various ligands and thus the destabilization.

  20. Thus, for example a dx2-y2 orbital is destabilized by (3/4 +6/16) es = 18/16 es in a trigonal bipyramid complex due to s interaction. The dxy, equivalent by symmetry, is destabilized by the same amount. The dz2 is destabililzed by 11/4 es.

More Related