190 likes | 422 Views
Rappel. Solution itérative de systèmes linéaires (suite et fin). Application à l’infographie. Aujourd’hui. Sous-espaces de R n : Définition; Sous-espaces associés à une matrice; Bases; Coordonnées; Dimension; Rang. 8. Sous-espaces de R n. Espaces et sous-espaces vectoriels.
E N D
Rappel... • Solution itérative de systèmes linéaires (suite et fin). • Application à l’infographie.
Aujourd’hui • Sous-espaces de Rn: • Définition; • Sous-espaces associés à une matrice; • Bases; • Coordonnées; • Dimension; • Rang.
8. Sous-espaces de Rn • Espaces et sous-espaces vectoriels. • Sous-espaces: souvent liés à une matrice A. • Nous donnent des indications sur l’équationAx = b.
Définition: sous-espace de Rn Un sous-espace de Rn est un ensemble H dans Rn ayant les trois propriétés: a. Le vecteur zéro est dans H. b. Pour chaque u et v dans H, la somme u + v est dans H. c. Pour chaque u dans H et chaque scalaire c, le vecteur cu est dans H.
Col A = {b| et b = Ax pour un quelconque } Définition: espace des colonnes Soit une matrice A m´n, l’espace des colonnes (ou image) de A est l’ensemble, dénoté Col A, de toutes les combinaisons linéaires des colonnes de A. En langage mathématique, on écrit
b est-il dans Col A? • Il faut déterminer si le système Ax = b a une solution (i.e. s’il est compatible). • Méthode: matrice augmentée [Ab] et réduction sous forme échelon.
Nul A = {x| et Ax = 0} Définition: noyau de A Soit une matrice Am´n, le noyau de A est l’ensemble, dénoté Nul A, de toutes les solutions de l’équation matricielle homogène Ax = 0. En langage mathématique, on écrit
Noyau d’une matrice Le noyau d’une matrice Am´n est un sous-espace de Rn. De même, l’ensemble de toutes les solutions d’un système Ax = 0 de m équations linéaires homogènes à n inconnues est un sous-espace de Rn.
x est-il dans Nul A? • Facile! • On fait Ax. Si Ax = 0, alors x est dans Nul A.
Nul A et Col A • Nul A: définition implicite, on doit vérifier chaque vecteur. • Col A: définition explicite, on peut construire les vecteurs en combinant linéairement les colonnes de A.
Définition: base Une base pour un sous-espace H de Rn est un ensemble linéairement indépendant dans H qui engendre H.
Base pour Col A Les colonnes pivot d’une matrice A forment une base pour Col A.
Définition: coordonnées B de x Supposons que l’ensemble B = {b1, ... , bp} soit une base d’un sous-espace H. Pour chaque x dans H, les coordonnées de x relativement à la base B (ou les coordonnées B de x) sont les coefficients c1, ... , cp tels que x = c1b1 + ... + cpbp,
Coordonnées B de x (suite) et le vecteur dans Rp est appelé le vecteur de coordonnées de x relativement à la base B.
Définition: dimension La dimension d’un sous-espace non-nul H, dénotée dim H, est le nombre de vecteurs dans une base quelconque de H. La dimension du sous-espace zéro, {0}, est définie comme étant égale à 0.
Définition: rang d’une matrice Le rang d’une matrice A (Rang A) est la dimension de l’espace des colonnes de A.
Rang d’une matrice Les dimensions des espaces des colonnes et des espaces des lignes d’une matrice Am´n sont égales. Cette dimension commune, le rang de la matrice A, est aussi égale au nombre de positions pivot de A et satisfait l’équation rang A + dim Nul A = n
Théorème sur les bases Soit H un sous-espace de Rn de dimension p. Tout ensemble linéairement indépendant contenant exactement p éléments dans H est automatiquement une base pour H. Également, tout ensemble de p éléments de H qui engendre H est automatiquement une base pour H.
Prochain cours... • Déterminants: • définition; • propriétés; • règle de Cramer; • calcul de l’inverse d’une matrice; • aire et volume; • transformations linéaires.