1 / 10

CAS AVEC Cm constant

Profit M. Surplus cons. = surplus social (profit = 0). +. Surplus cons. c, p. = surplus social. Perte sèche de monopole (dead-weight loss). Cm = CM. Rm. RM = p(q). q. p M > p cpp ; q M < q cpp ; π M > π cpp Surplus cons. M < surplus cons. cpp

Download Presentation

CAS AVEC Cm constant

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Profit M Surplus cons. = surplus social (profit = 0) + Surplus cons. c, p = surplus social Perte sèche de monopole (dead-weight loss) Cm = CM Rm RM = p(q) q pM>pcpp ; qM<qcpp ; πM> πcpp Surplus cons. M< surplus cons. cpp Surplus social M< surplus social cpp = non compensation <=> perte sèche CAS AVEC Cm constant Monopole : cpp : pM CM pcpp = Cm = CM qM qcpp Monopole : q et p tels que Rm = Cm cpp : p = p(q) = Cm

  2. Cas standard Cm c, p CM RM = p(q) Rm q En monopole : p , q , π , surplus cons. , surplus social Coût pour la société perte sèche ? Cf POSNER, externalités < > Perte sèche (dead-weight loss) B pM C pcpp CMcpp A CMM qcpp qM Comparaison avec cpp :p (=RM) = Cm(tarification au coût marginal)

  3. Rq : CM => sous-additivité mais pas l'inverse (CM = condition suffisante mais pas nécessaire) CM Zone de CM décroissants Zone de sous-additivité B2/ La question du MONOPOLE NATUREL MONOPOLE NATUREL : cas où le coût de production d'un bien est minimum lorsque la totalité de la production vendue sur le marché est assurée par une seule firme Condition 1 : sous-additivité de la fonction de coût… TMO

  4. Condition 2 :...pour la totalité de la production vendue sur le marché Dépend de la position de la Demande Demande CM NON !!

  5. TMO Condition 2 :...pour la totalité de la production vendue sur le marché Dépend de la position de la Demande Demande Limite de sous-additivité CM Oui, mais problème ...non traité ici

  6. TMO Condition 2 :...pour la totalité de la production vendue sur le marché Dépend de la position de la Demande Demande CM OUI = CAS "STANDARD"

  7. Cm c, p CM RM = p(q) Rm q OPTIMUM DU MONOPOLEUR ET OPTIMUM SOCIAL Optimum du monopoleur (Rm = Cm) pM CMM qM Profit, mais pas d ’optimum social => on pourrait produire plus, à un CM inférieur et à un prix plus faible

  8. Cm c, p CM RM = p(q) Rm q Surplus con. => surplus social OPTIMUM DE 1er RANG Tarification au coût marginal (p = RM = Cm) CMtCm CMtCm >ptCm Profit négatif !!! ptCm qtCm mais Profit < 0 => subvention et impôts ?

  9. Cm c, p CM RM = p(q) Rm q surplus cons. , surplus social OPTIMUM de SECOND RANG Tarification au coût moyen (p = RM = CM) PtCM = CM qtCM Profit nul <=> équilibre budgétaire

  10. Optimum Monopoleur (Rm = Cm) Tarification au coût moyen (p = CM) Tarification au coût marginal (p = Cm) p M > p tCM > p tCm q M < q tCM < q tCm π M > π tCM (= 0) > π tCm(< 0) (π max) surplus cons.M < surplus cons.tCM < surplus cons.tCm Surplus SocialM < Surplus SocialtCM < Surplus SocialtCm Action de l ’Etat : « forcer » le système ==> optimum 1er ou second rang Monopole public, régulation de monopole privé

More Related