1 / 64

Algebra 2 Trig A

Review of Algebra 2 Trigonometry problems involving hyperbolas, circles, ellipses, and parabolas with detailed solutions and step-by-step explanations.

kingnancy
Download Presentation

Algebra 2 Trig A

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Algebra 2 Trig A Final Review 2007

  2. #1 Hyperbola • Center (0, 0) • a = 8, b = 7, c = • Vertices: (+8, 0) • Foci: ( , 0) • Slopes of asymptotes: +7/8

  3. #2 y2 = 121 - x2 • Circle: x2 + y2 = 121 • Center: (0, 0) • Radius = 11

  4. #3 y = 2(x - 2)2 + 1 • Parabola • Center/Vertex: (2, 1) • AOS: x = 2 • DOO: up • Focus: (2, 9/8) • Directrix: y = 7/8

  5. #4 6x2 + 16y2 = 96 • Ellipse: • Center: (0, 0) • a = 4, b = , c = • M vertices: (±4, 0) • Foci: ( , 0) • LMA = 8 • lma =

  6. #5 x2 - 2x + y - 8 = 0 • Parabola: y = -(x - 1)2 + 9 • Center/Vertex: (1, 9) • AOS: x = 1 • DOO: down • Focus: (1, 8 3/4) • Directrix: y = 9 1/4

  7. #6 x2 = 2x + y2 - 4y + 7 • Hyperbola • Center: (1, 2) • a = 2, b = 2, c = • Vertices: (3, 2), (-1, 2) • Foci: (1± , 2) • Slopes of Asymptotes: ±1

  8. #7 x2 +4y2 + 2x - 24y + 33 = 0 • Ellipse • Center: (-1, 3) • a = 2, b = 1, c = • Vertices:(-3, 3),(1, 3) • Foci: • LMA = 4 • lma = 2

  9. #8 x2 + y2 = x + 2 • Circle • Center: (1/2, 0) • Radius= 3/2

  10. #9 Find f(x) + g(x) • f(x) = x2-x+3 g(x) = x+8 • f(x)+g(x) = (x2-x+3) + (x+8) • f(x)+g(x) = x2 + 11

  11. #10 Find f(x) - h(x) • f(x) = x2-x+3 g(x) = x+8 • f(x) - h(x) = (x2 - x + 3) - (3x2+1) • f(x) - h(x) = x2 - x + 3 - 3x2 - 1 • f(x) - h(x) = -2x2 - x + 2

  12. #11 Find f(g(x)) • f(x) = x2-x+3 g(x) = x+8 • f(x) = x2 - x + 3 • f(g(x)) =(x+8)2 - (x+8) + 3 • f(g(x)) = x2 + 16x +64 - x - 8 + 3 • f(g(x)) = x2 +15x + 59

  13. #12 Find f(h(x)) • f(x) = x2-x+3 h(x) = 3x2+1 • f(x) = x2 - x + 3 • f(h(x)) = (3x2+1)2 - (3x2+1) + 3 • f(h(x)) = 9x4+6x2+1-3x2-1+3 • f(h(x)) = 9x4+3x2+3

  14. #13 Find g(f(x)) • g(x) = x+8 f(x) = x2-x+3 • g(x) = x + 8 • g(f(x)) = (x2 - x + 3) + 8 • g(f(x)) = x2 - x + 11

  15. #14 Find h(f(x)) • h(x) = 3x2+1 f(x) = x2-x+3 • h(x) = 3x2 + 1 • h(f(x))= 3(x2 - x + 3)2 + 1 • h(f(x))= 3(x4-2x3+4x2 -3x+9)+1 • h(f(x))= 3x4-6x3+21x2-18x+27+1 • h(f(x))= 3x4-6x3+21x2-18x+28

  16. #15 Find h(g(x)) • h(x) = 3x2+1 g(x) = x+8 • h(x) = 3x2 + 1 • h(g(x)) = 3(x + 8)2 + 1 • h(g(x)) = 3(x2 + 16x + 64)+1 • h(g(x)) = 3x2 + 48x + 192 + 1 • h(g(x)) = 3x2 + 48x + 193

  17. #16 Find f(-3) • f(x) = x2 - x + 3 • f(x) = x2 - x + 3 • f(-3) = (-3)2 - (-3) + 3 • f(-3) = 9 + 3 + 3 • f(-3) = 15

  18. #17 Find h(f(4)) • h(x) = 3x2+1 f(x) = x2-x+3 • f(4) = (4)2 - (4) + 3 • f(4) = 15 • h(x) = 3x2 + 1 • h(15) = 3(15)2 + 1 • h(f(4)) = 676

  19. #18 Find g(h(2)) • g(x) = x+8 h(x) = 3x2+1 • h(2) = 3(2)2 + 1 • h(2) = 3(4) + 1 • h(2) = 13 • g(13) = 13 + 8 • g(h(2)) = 21

  20. #19 Inverse of f(x) = 4x + 5 • y = 4x + 5 • x = 4y + 5 • x - 5 = 4y • x/4 - 5/4 = y

  21. #20 Inverse of g(x) = 3x2 - 12 • y = 3x2 - 12 • x = 3y2 - 12 • x + 12 = 3y2 • x/3 + 4 = y2

  22. #21 f(x)=1/2x+2 g(x)=2x-4 • f(g(x))=1/2(2x - 4) + 2 • f(g(x)) = x - 2 + 2 • f(g(x)) = x

  23. #22 f(x) = 3x-9 g(x) = -3x+9 • f(x) = 3x-9 • y = 3x - 9 • x = 3y - 9 • x + 9 = 3y • x/3 + 3 = y • Not equal to g(x)

  24. #23 {(1,3),(1,-1),(1,-3),(1,1)} • {(3,1),(-1,1),(-3,1),(1,1)} • Domain: 3, -1, -3, 1 • Unique x - coordinates

  25. #24 Simplify • Simplify:

  26. #25 Simplify • Simplify

  27. #26 Simplify • Simplify:

  28. #27 Simplify • Simplify:

  29. #28 Absolute value equation • Solve:

  30. #29 Absolute Value Inequality • Solve:

  31. #30 Find f(-5) • If f(x) = 4x3 - x + 1 • f(-5) = 4(-5)3 - (-5) +1 • f(-5) = -500 + 5 + 1 • f(-5) = -494

  32. #31 Do the math • (8x3 + 2x2 + 3x)÷(2x + 3)

  33. #32 Simplify • Simplify:

  34. #33 Factor: 27a3 + 125b3 • Factor: 27a3 + 125b3 • (3a + 5b)(9a2 - 15ab + 25b2)

  35. #34 Factor: 9x2 - 12x + 4 • Factor: 9x2 - 12x + 4 • (3x -2)2

  36. #35 Factor: 7y - 12x + 4xy - 21 • Factor: 7y - 12x + 4xy - 21 • 7y - 21 + 4xy - 12x • 7(y - 3) + 4x(y - 3) • (y - 3)(7 + 4x)

  37. #36 Factor: 15a3b - 5a2b2 - 10ab3 • Factor: 15a3b - 5a2b2 - 10ab3 • 5ab(3a2 - ab - 2b2) • 5ab(3a2 - 3ab +2ab - 2b2) • 5ab[3a(a - b) + 2b(a - b)] • 5ab(a - b)(3a + 2b)

  38. #37 Simplify: • Simplify:

  39. #38 Simplify: • Simplify:

  40. #39 Simplify: • Simplify:

  41. #40 Solve: • Solve:

  42. #41 Solve: x2 + 441 = 0 • Solve: x2 + 441 =0 • x2 = -441 • x = • x = ±21i

  43. #42 Simplify: (9 - 3i) - (3 + 5i) • (9 - 3i) - (3 + 5i) • 9 - 3 - 3i - 5i • 6 - 8i

  44. #43 Simplify: (5 + 4i)(3 - 7i) • Simplify: (5 + 4i)(3 - 7i) • (5 + 4i)(3 - 7i) • 15 - 35i + 12i - 28i2 • 15 - 23i - 28(-1) • 15 - 23i + 28 • 43 - 23i

  45. #44 Simplify: • Simplify:

  46. #45 Simplify: (7 - 3i)(7 + 3i) • Simplify: (7 - 3i)(7 + 3i) • 49 + 21i - 21i - 9i2 • 49 - 9(-1) • 49 + 9 • 58

  47. #46 Simplify: i10i21i30 • Simplify: i10i21i30 • i10+21+30 = i61 = i4(15)+1 = i1 = i

  48. #47 Simplify • Simplify:

  49. #48 Solve: x2 + 5x + 13 = 0 • x2 + 5x + 13 = 0

  50. #49 Solve: 6x2 + 7x = 3 • Solve:

More Related