1 / 7

An Introduction to Making Inferences

An Introduction to Making Inferences. descriptive statistics – summarize important characteristics of known population data inferential statistics – we use sample data to make inferences or generalizations about a population (review population and sample)

kiora
Download Presentation

An Introduction to Making Inferences

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. An Introduction to Making Inferences

  2. descriptive statistics – summarize important characteristics of known population data • inferential statistics – we use sample data to make inferences or generalizations about a population (review population and sample) • sampling statistic - any statistic that describes the distribution of values for a variable, or relationships between variables in a sample • population parameter – the estimated characteristics of a population derived from sampling statistics • must have a well chosen sample!!! (sound sampling procedures)

  3. z-scores (and the normal distribution) enable us to standardize values so they can be compared (example: SAT); also remember 68-95-99.7 rule

  4. Standard Deviation • looking at data: the smaller the standard deviation in relation to the range of responses, the more homogeneous are the responses • standard score (or z-score) – the number of standard deviations that a given value x is above or below the mean. In a z distribution, the mean = 0, and the standard deviation is 1. Thus, a z-score of 1.5 is 1 ½ sd above the mean, and a z-score of –2 is 2 sd below the mean. sample z: population z:

  5. Calculating z - scores In what test did she do the best? Math English Biology

  6. Calculating z - scores In what test did she do the best? Math English Biology Even though the raw score was lowest for English, in comparison she was 1.5 sd above the mean, therefore she actually did better, in comparison with the other students taking the exam, in English than in math or bio.

  7. Lets say you took the GRE a few weeks ago and got scores of 630 Verbal and 700 Quantitative. How good are these scores? Which is better, the Verbal or Quantitative score? Using a z-score can tell you how far you are from the mean and thus how well you performed. If you know the mean and standard deviations for a set of GRE test takers you can compare your scores. P 470 TO CHANGE Z SCORE TO PERCENTS Verbal z = (630 - 469) ÷ 119 = 1.35 Quantitative z = (700 - 591) ÷148= .736

More Related