270 likes | 814 Views
Obvod rovnoběžníku. Rovnoběžník a jeho vlastnosti. Zopakujeme si základní vlastnosti. Rovnoběžník (kosodélník) je čtyřúhelník, který má rovnoběžné protilehlé strany. a c ; AB CD. b d ; BC DA. Rovnoběžník a jeho vlastnosti. Protější strany rovnoběžníku mají stejnou délku.
E N D
Rovnoběžník a jeho vlastnosti Zopakujeme si základní vlastnosti. Rovnoběžník (kosodélník) je čtyřúhelník, který má rovnoběžné protilehlé strany. a c; AB CD bd; BC DA
Rovnoběžník a jeho vlastnosti Protější strany rovnoběžníku mají stejnou délku. a =c; AB= CD b=d; BC=DA
Rovnoběžník a jeho vlastnosti Protější úhly rovnoběžníku mají stejnou velikost. = ; DAB= BCD =; ABC= CDA
Rovnoběžník a jeho vlastnosti Součet velikostí sousedních úhlů je 180°. Součet velikostí všech úhlů je 360°. + + +=360° + =+ = + = + = 180°
Rovnoběžník a jeho vlastnosti Úhlopříčky se navzájem půlí. = = Průsečík úhlopříček je středem souměrnosti rovnoběžníku. SC AS SD BS
Rovnoběžník a jeho vlastnosti Rovnoběžník je útvar středově souměrný.
Rovnoběžník −výšky rovnoběžníku Výška rovnoběžníku je kolmá vzdálenost protilehlých rovnoběžných stran. Jelikož rovnoběžník je tvořen dvěma dvojicemi protilehlých stran, existují i dvě různé výšky rovnoběžníku va a vb (velikosti). . .
Rovnoběžník −výšky rovnoběžníku Výška je kolmá vzdálenost stran. Není tedy nijak vázaná na vrcholy rovnoběžníku, tudíž může být kdekoliv, kde splňuje podmínku kolmosti na protilehlé strany. Může být dokonce i mimo rovnoběžník. V takovém případě je ovšem potřeba strany rovnoběžníku nejdříve patřičně protáhnout. Jelikož výška je kolmá vzdálenost dvou protilehlých stran, tak i její označení může být dvojí. V našem případě je to kolmá vzdálenost stran a a c, tudíž va nebo vc. . . .
Obvod rovnoběžníku Obvod znamená vymezení nějaké plochy, jde o hraniční křivku rovinného útvaru nebo její délku. Nás nyní zajímá délka hraniční křivky (úsečky, strany) vymezující rovnoběžník. o = a + b + c + d
Obvod rovnoběžníku Obvod znamená vymezení nějaké plochy, jde o hraniční křivku rovinného útvaru nebo její délku. Nás nyní zajímá délka hraniční křivky vymezující rovnoběžník. Obvod rovnoběžníku je roven dvojnásobku součtu různoběžných stran. Protože rovnoběžník má protilehlé strany stejně dlouhé, platí, že a = ca b = d. o= a +b +c +d o= a +b +a +b o = 2a +2b o=2.(a+b)
Příklady k procvičení Vypočítej obvod rovnoběžníku ABCD (viz obrázek). Pokud si nebudeš vědět rady, klikni a já tě povedu. b = 3,7 cm a = 6,2 cm
Příklady k procvičení Vypočítej obvod rovnoběžníku ABCD (viz obrázek). Pokud si nebudeš vědět rady, klikni a já tě povedu. b = 3,7 cm a = 6,2 cm Obvod rovnoběžníku se vypočítá podle vzorce: o = 2.(a+b) o = 2.(6,2+3,7) o = 2.9,9 o = 19,8 cm Rovnoběžník ABCD má obvod 19,8 cm.
Příklady k procvičení Vypočítej obvod rovnoběžníku ABCD (viz obrázek). Pokud si nebudeš vědět rady, klikni a já tě povedu. c = 5,2 cm d = 4,4 cm
Příklady k procvičení Vypočítej obvod rovnoběžníku ABCD (viz obrázek). Pokud si nebudeš vědět rady, klikni a já tě povedu. Obvod rovnoběžníku se vypočítá podle vzorce: o = 2.(a+b) c = 5,2 cm d = 4,4 cm Písmena a a b označují různoběžné strany. V našem příkladu tedy dosadíme strany c a d. o = 2.(5,2+4,4) o = 2.9,6 o = 19,2 cm Rovnoběžník ABCD má obvod 19,2 cm.
Příklady k procvičení Vypočítej obvod rovnoběžníku ABCD (viz obrázek). Pokud si nebudeš vědět rady, klikni a já tě povedu. b = 53 mm a = 6 cm
Příklady k procvičení Vypočítej obvod rovnoběžníku ABCD (viz obrázek). Pokud si nebudeš vědět rady, klikni a já tě povedu. POZOR NA JEDNOTKY! Dosazujeme až po převodu na stejné jednotky. Vše převedeme např. na milimetry, abychom se vyhnuli desetinným čárkám. b = 53 mm a = 6 cm Obvod rovnoběžníku se vypočítá podle vzorce: o = 2.(a+b) o = 2.(60+53) o = 2.113 o = 226 mm Rovnoběžník ABCD má obvod 226 mm.
Příklady k procvičení Vypočítej délku strany d rovnoběžníku ABCD (viz obrázek). Pokud si nebudeš vědět rady, klikni a já tě povedu. o = 23 cm a = 3,5 cm
Příklady k procvičení Vypočítej délku strany d rovnoběžníku ABCD (viz obrázek). Pokud si nebudeš vědět rady, klikni a já tě povedu. Nejprve logicky: Obvod rovnoběžníku je součtem dvojnásobku jedné různoběžné strany a dvojnásobku druhé různoběžné strany. o = 23 cm Jedna strana má délku 3,5 cm, dvojnásobek tedy je 7 cm. a = 3,5 cm Jestliže od celého obvodu, tj. 23 cm, odečteme součet dvojnásobku jedné různoběžné strany, tj. 7 cm, zbude nám na dvojnásobek druhé různoběžné strany 16 cm. Je-li dvojnásobek druhé různoběžné strany 16 cm, je tato strana dlouhá 8 cm.
Příklady k procvičení Vypočítej délku strany d rovnoběžníku ABCD (viz obrázek). Pokud si nebudeš vědět rady, klikni a já tě povedu. Ještě jednou ryze matematicky: Jelikož známe obvod, vyjdeme ze vzorce pro výpočet obvodu rovnoběžníku: o = 2.(a+b) 23 = 2.(3,5+b) o = 23 cm 23 = 7+2.b 23−7 = 2.b Po dosazení zadaných veličin nám zůstane rovnice o jedné neznámé b. Strana b má přitom stejnou velikost jako strana d. 16 = 2.b 16:2 = b a = 3,5 cm b = 8 cm b = d = 8 cm Strana d rovnoběžníku ABCD je dlouhá 8 cm.
Příklady k procvičení Rovnoběžník má obvod 5,3 m. Jedna jeho strana má délku 35 cm. Vypočítej, o kolik cm je větší strana rovnoběžníku delší než menší strana.
Příklady k procvičení Rovnoběžník má obvod 5,3 m. Jedna jeho strana má délku 35 cm. Vypočítej, o kolik cm je větší strana rovnoběžníku delší než menší strana. Jelikož známe obvod, vyjdeme ze vzorce pro výpočet obvodu rovnoběžníku: o = 2.(a+b) Pozor na jednotky. Před dosazením je převedeme na stejné, v našem případě např. na centimetry: 530 = 2.(35+b) 530 = 70+2.b 530−70 = 2.b 460 = 2.b 460:2 = b b = 230 cm Na závěr musíme ještě určit, o kolik cm je větší strana delší než menší strana. Od větší strany tedy odečteme stranu menší: 230−35 = 195 cm Větší strana je tedy o 195 cm delší než menší strana.
Obvod rovnoběžníku A na závěr ještě zobecnění! Ne vždy budeme mít zadán rovnoběžník ABCD, ne vždy strany a a b! Obecně tedy platí, že obvod rovnoběžníku vypočítáme jako dvojnásobek součtu různoběžných stran. o = 2.(jedna různoběžná strana + druhá různoběžná strana)