60 likes | 73 Views
Math Tools. Remember these?. Singular Value Decomposition (SVD). M = U S V T. Orthogonal. Orthogonal. (“Rotate”). (“Rotate”). Diagonal. (“Stretch”). SVD. S. U. V T. Output. Scaling. Input. A simple case. V=. U. S. V T. u 2. O. S. I. x. Outer Product!. v 2. u 1.
E N D
Math Tools
Singular Value Decomposition (SVD) M = U S VT Orthogonal Orthogonal (“Rotate”) (“Rotate”) Diagonal (“Stretch”)
SVD S U VT Output Scaling Input
A simple case V= U S VT u2 O S I x Outer Product! v2 u1 v1
SVD can be interpreted as • A sum of outer products! • Decomposing the matrix into a sum of scaled outer products. • Key insight: The operations on respective dimensions stay separate from each other, all the way – through v, s and u. • They are grouped, each operating on another piece of the input.