470 likes | 511 Views
LISA spectrograph Long slit Intermediate resolution Spectrograph for Astronomy Performances and application. Christian Buil. Active Spectroscopy in Astronomy Essen – 7 May 2011. Spectrograph resolution categories ( R = l/dl ). Lhires R = 16000. eShel R = 11000. High resolution.
E N D
LISA spectrograph Long slit Intermediate resolution Spectrograph for Astronomy Performances and application Christian Buil Active Spectroscopy in Astronomy Essen – 7 May 2011
Spectrograph resolution categories ( R = l/dl ) Lhires R = 16000 eShel R = 11000 High resolution Medium resolution (or intermediate) LISA R = 500 to 1000 Star Analyser R = 100 to 200 Low resolution
Spectral resolution (R) and luminosity (L) : a complementary effort R x L = constant Faint object spectroscopy The example of Star Analyser : very low resolution, very high luminosity Planetary nebulae NGC 2392 – 15 x 30 seconds
Faint object spectroscopy But do not mystake luminosity and detectivity ! One limitation of slitless spectroscopy : sky background pollution The symbiotic star V1016 Cyg Another limitation of SA : optical aberration Chromatic coma : a source of detectivity degradation (bad capacity to concentrate energy) Grism improvement
Faint object spectroscopy The importance of an entrance slit Large slit Narrow slit The sky background level if proportionnal to the slit wide The backgroung photon noise is proportionnal to the square root of slit wide
The LISA concept (1/2) • Ajustable entrance slit by step (from 15 microns to 100 microns) • (capacity to optimise spectral resolution to a specifictarget) • Fast input beam : up to f/5 input i.e. highluminosityspectrograph (reducepotential guidance problembecauseshorter focal length, capture of faint surface objet like galaxies, comets, … • Optimized spectral dispersion to modern camera (2 A / pixel sampling on a popular KAF8300 CCD ship) • Balance between power resolutioncapacity and scientificinterest (R = 500 to 1000 typically) – Sodium doublet isjustseparatedwith a 23 microns slit 2D spectrum of moon surface Na DA, D2 Mg I,2,3 Halpha
The LISA concept (2/2) • Wide spectral range in one shot : 3950 A – 7200 A (+ IR option) • Integrated calibration system (neonlamp + tungstenlamp) : easy to use and standard pipeline processing. Possibility to fullyautomatize acquisition. • Compact and moderateweigth : adaptable on smallrefractor and refractor. • Lowcost : large diffusion if possible!
Optical design Internal grandissement G = 0,603 For example: if the telescope focal / diameter ratio is 6, the final F/D is 6 x 0,603 = 3,6 (LISA is equivalent to a focal reducer).
Mechanical design Ajustable grating angle Calibration unit
Pointing and guidance system High quality slit image on the guidance camera (here M104 galaxy with a Watec 120N) High reflectivity slit Very constant edge
Calibration module (spectral calibration and flat-field) Electromagnetic system – 12 V power – Remote operation possible
Interfaces Optimal input focal ratio f/5 to f/7 A fast Newton telescope is ideal (achromatism) For SC Telescope : focal reducer (here a Baader Alan Gee - final ratio f/6.8) Fast adaptation for CCD camera and DSRL
Example of setup with Atik CCD cameras Atik 314L for spectra acquistion (1390 x 1040 x 6.45 µm pixel size)Readout noise : 4.5 e-, Camera gain : 0.250 e-/ADU, typical quantum efficiency @ 656 nm : 55% Atik Titan for pointing and guiding functions (faint object identification capability + rudimentary photometry measure on the targets) Low cost solution for LISA, low mass on the telescope, high performances
Amovible entrance slit High precision chromium serigraphy 15 – 19 – 23 – 32 microns (option 50 – 75 – 100 microns + 19 microns hole) Slit 23 microns – R = 1100 W = 2,5 arcsec on C11 f/6.8 Slit 50 microns – R = 600 W = 5.4 arcsec on C11 f/6.8
Automatised processing Rlhires application
Automatic spectral calibration by using observed type A, B or G star spectra and internal neon lamp spectrum Fit dispersion law with a 3e order polynomial function (typical RMS error : 0.3 to 0.4 A)
Many tools available : computation of heliocentric velocity, H2O removal, atmopsheric transmission, spectra database, …. French/english interface
Limit magnitude Integration time : 1 hour (6 x 600 sec)Signal to noise ratio = 10 (@ Halpha)Type A0V star – Seeing = 3 arcsec CCD KAF-8300 (Binning 1 x1) Altitude 0 m - Suburban Altitude 3000 m – Dark sky
Limit magnitude (function of detector type) Integration time : 1 hour (6 x 600 sec)Signal to noise ratio = 10 (@ Halpha)Type A0V star – Seeing = 3 arcsec Altitude 3000 m – Dark sky CCD KAF-8300 (Binning 2 x2) CCD KAF-3200 (Binning 2 x2) CCD ICX285AL (Binning 2 x2) M = 16.1 (KAF-8300) M = 16.5 (KAF-3200)M = 16.6 (ICX424AL) 3 hours integration (18 x 600 sec) – Slit 50 µm – D = 28 cm F/D = 6.8
Typical aspect of LISA 2D spectra Symbiotic star V1016 Cyg Star Analyser 2D spectrum before sky removal (23 µm slit) 2D spectrum after sky substraction
Survey of know Be Star + and detection of new Be star Beta Lyrae (Shelyak) – 15 x 30 s Rapid scan of B and A star for Halpha emission signature (5-10 minutes exposure) (list of nearly 1000 stars – magnitude < 10)
Faint Be stars observation (BeSS) V = 6.09 – 9 x 120 s V = 4.74 – 8 x 60 s V = 8.62 – 6 x 300 s (new BeSS entry) V = 8.63 – 7 x 300 s (new BeSS entry)
Survey of cataclysmic (novae like) SS Cyg outburst (V = 8.7) – April 4.1, 2011
Outburst of cataclysmic V694 Mon High velocity wind – Fast evolution
Recurent nova T Pyxidis : day to day monitoring of profile evolution
Observation at very low angular elevation : associated problem T Pyxidis declinaison = -32 degrees T Pyxidis 2D spectrum 6 arcsec refraction at 12 degree elevation Paralactic angle Horizon
Nova Sagittarii 2011 #2 (V5588 Sgr) V = 13.2
Eruption of Herbig Ae/Be star Z CMa Vis + IR spectrum Detail of IR spectrum
MIRA star R Leo at V = 8.5 Wide band spectrum
Wolf-Rayet star HD 56925 WR 7 – V = 11.7 HD 56925 in NGC 2359 nebula
Messier 1 (Crab nebulae) - 5 x 600 s @ R = 600 R Mon in NGC 2261 nebula 3 x 600 s @ R = 1000
SUPERNOVA SN 2011ae in MCG-3-30-19
SUPERNOVA SN 2011by in NGC 3979
Messier 104 Sombrero galaxy Audela autoguiding 2D spectrum Na rest = 5892.9 A - Na observed = 5916.9 A – z = (5916.9 – 5892.9) / 5892.9 = 0.0041 (17 Mpc)
Active galaxies (Seyfert) NGC 4151 NGC 4051
Quasar 3C273 LISA infrared version Observed Halpha at 7584 A z = (7584 - 6563)/6563 = 0.155 (official z = 0.158) McDonald 2,1 m K. Thompson AJ, 395, 404,417, 1992
Quasar Mrk 205 observation (V = 15.5)
Quasar Mrk 205 7 x 600 sec. – 50 µm slit Observed z = 0.0710 (official value z = 0.0705)