1 / 125

İKİ DEĞİŞKENLİ BASİT DOĞRUSAL REGRESYON MODELİ

İKİ DEĞİŞKENLİ BASİT DOĞRUSAL REGRESYON MODELİ. Regresyon Y ile X (X ler) arasındaki ortalama ilişkinin matematik fonksiyonla ifadesidir. Sabit terim. Eğim. X’e bağlı olarak Y’nin ortalamasının nasıl değiştiğini gösterir. Y i deki değişim=[Düzenli değişim]+[Rassal değişim].

latif
Download Presentation

İKİ DEĞİŞKENLİ BASİT DOĞRUSAL REGRESYON MODELİ

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. İKİ DEĞİŞKENLİ BASİT DOĞRUSAL REGRESYON MODELİ Regresyon Y ile X (X ler) arasındaki ortalama ilişkinin matematik fonksiyonlaifadesidir. Sabit terim Eğim X’e bağlı olarak Y’nin ortalamasının nasıl değiştiğini gösterir.

  2. Yi deki değişim=[Düzenli değişim]+[Rassal değişim] Yi deki değişim=[Açıklanan değişim]+[Açıklanamayan değişim] • Ekonometrik modelin ortaya çıkmasına sebep olan hata teriminin kaynakları: • ÖLÇME HATALARI: Toplam tüketim ve milli gelir, kiralar ve hane gelirleri gibi değişkenlerin değerlerinden hareketle ekonometrik bir modeli tahmin ediyoruz. ‘‘Bu değerler nasıl tespit edilmektedir’’sorusunun cevabı bize ölçme hatalarını açıklayacaktır.

  3. Tarım ve sanayi sektöründe üreticilerin fiyatlarını tespit ederken üreticiler yanlış beyanda bulunabilir. Yine hanelerle anket yaparken gelirlerini düşük beyan ederken, çeşitli mal ve hizmetler(kira,gıda,ulaştırma, vb.) yaptıkları harcama tutarlarını olduğundan fazla söyleyebilirler. İşte bu tür hatalara ölçme hataları veya sistematik hatalar denir. • Bütün bu hatalar tüketim veya gelirler veyahut başka bir konuda topladığımız rakamların gerçeklerden sapmasına sebep olurlar ki bunların hepsine birden ölçme hataları denir.

  4. C ve Yd değerleri gerçeğe nazaran (C+X) ve (Yd+Z) gibi sapmalı olacaktır. Böylece, C=a+bYd de ve tahmini değerleri, X ve Z sapmaları nisbetinde güvenilemez olacaktır. • İktisat kanunlarının doğruluğu veya anlaşılabilmesi, istatistik verilerinin (tüketim,gelir, kira, nüfus miktarları ile ilgili rakamların) kalitesine, doğruluğuna ve elde bulunmasına bağlıdır.

  5. Bu rakamların objektif ve doğru bir şekilde toplanamaması halinde ortaya çıkan ölçme hataları ortadan kaldırılamamaktadır. İstatistik ve ekonometride gerçekleştirilen tüm metodolojik yenilikler, bunların hatalı verilere uygulanması durumunda faydasız olacaktır. TOPLAMA HATALARI: Ekonomik analizlerde birbirinden farklı hane halklarına veya kişilere ait değerler toplanır ve bunların ortalaması hesaplanır.(toplam tüketim,ortalama tüketim,ortalama gelir gibi) • Her ortalama ise serisini tek bir kıymetle ifade eden bir tahmindir.

  6. Ortalama hesabı ile her hane veya birime ait değerler bir tek değere indirilmiş olmakta ve birimlerin kendi değerleri(özellikleri) kaybolmaktadır. • En yüksek gelirli ile en düşük gelirli; en yüksek kira ödeyenle en az kira ödeyen ortalama gelir veya ortalama kira tutarı ile bir tutulmaktadır. Burada bir hata olduğu açıktır, bu hatalarada ‘‘toplama hataları denilmektedir.’’

  7. ÖRNEKLEME HATALARI(TESADÜFİ HATALAR, STOKASTİK HATALAR): Memurların dalgınlığı veya dikkatsizliği sonucu bazı rakamların yanlış yazılması ile ortaya çıkan hatalarla örnekleme yapılması sebebiyle ortaya çıkan hataları kapsar. • Örneğin, Türkiye’de ortalama kirayı bulabilmek için, toplam 3 milyon kiracıdan %1’ini (30bin) seçerek örnekleme yapılabilir. %1 örnekleme yerine binde bir yani 3bin kiracı alabiliriz veya 12 yıllık dönem yerine 25 yıllık dönem alabiliriz.

  8. Bu farklı hane sayısı veya yıl sayısı (örnek büyüklüğü) ile yapılacak kira ve tüketim fonksiyonları için farklı katsayılar (a ve b’ler) bulunacaktır. Muhtelif örnekler arasında, örneğe giren birimlerin kiraları arasındaki farklılıklar sebebiyle ortaya çıkan tahmin farklılıkları örnekleme hatalarını oluşturur. • Bu hatalar artı ve eksi iki yönlüdür. Yani mümkün olan bütün örnekler çekildiği ve kira fonksiyonu tahmin edildiğinde , ve ’lerin bir kısmı anakütle gerçek b1 ve b2 katsayılarından küçük; bir kısmının da bu anakütle değerlerinden büyük ve dağılımlarının normal olduğu görülür.

  9. Bu sebeple üç milyonluk anakütleden çekilebilecek tüm örneklerin, katsayı tahminleri hesaplanır ve ayrı ayrı ortalamaları veya beklenen değerleri hesaplanırsa, ve (marjinal kira tüketim eğilimi)’dır. • Ölçme hataları, ortadan kaldırılmadığı halde örnekleme hataları iki yönlü (artı ve eksi) olduklarından birbirinin tesirini ortadan kaldırabilirler.

  10. SPESİFİKASYON HATALARI: İktisadi teori,gerçeğin bilerek basitleştirilmiş şeklidir. Toplam tüketim sadece harcanabilir gelire bağlı değildir, tüketicilerin zevkleri, fiyatlar seviyesi, servet gelir dağılımı, yaş piramidi, tüketicilerin son zamanlardaki gelir durumu gibi diğer bazı bağımsız değişkenlerede bağlıdır. • Modele tüm bu değişkenleri alabilsek bile-ki uygulamalarda veri noksanlığı gibi sebeplerle bu mümkün olamamaktadır- değişkenler arasındaki ilişki C=a+b Yd şeklinde doğrusal olmayabilir.

  11. Gerçek ilişki; gibi veya daha karmaşık bir ilişki olabilir. Veya tüketim fonksiyonu böyle tek denklemli değilde, 6 denklemli bir model olarak çözülmesi gerekebilir. Bütün bu sebeplerden ortaya çıkan hatalar “spesifikasyon hataları” denilmektedir. Bu hatalar ekonometrik bir araştırmada ilk olarak göz önünde tutulması gereken hatalardır.

  12. y E(y|x) = b0 + b1x . y4 { u4 . u3 y3 } . y2 u2 { u1 . } y1 x2 x1 x4 x3 x

  13. Y y2 ΔY= b2 ΔX y1 ΔX b1 X x2 x1 Doğrusal denklemin grafiği düz bir çizgi olup sabit ve eğim katsayılarını birbirinden ayırma özelliğine sahiptir. Sabit sayı X=0 olduğu zaman Y’nin alacağı azami değer ve eğim ise ΔY/ ΔX oranı olup X üzerindeki bir noktadan diğer bir noktaya olan hareketliliği göstermektedir.

  14. b1 ve b2 hakkında bazı çıkarsamalar: • Eğer b2 pozitif ise çizginin veya doğrunun eğimi soldan sağa yukarıya doğru; yok eğer negatif ise tersi geçerlidir. • Eğer b2’in mutlak değeri büyükse doğru daha dik olmaktadır. • Eğer b2= 0 ise doğru X eksenine b1 noktasında paralleldir. • Bir çok fonksiyonlar düz çizgi halinde değildirler

  15. Anakütle Regresyon Denklemi Örneğin: 4000 nüfuslu bir kasabada 500 hane bulunsun ve bunlardan sadece 60’ı memur olsun.

  16. Örnek Regresyon Denklemi

  17. En Küçük Kareler Denklemleri İfadesini minimize eden parametre tahmincilerinin değerlerini bulabilmek için eşitliğin 0 ve 1‘e göre türevleri alınıp 0’a eşitlenir. 0‘a göre türev alınırsa; 1‘e göre türev alınırsa; Her iki denklemi de 0’a eşitlersek;

  18. Parantezleri açarsak; Bu denklemlere doğrunun NORMAL DENKLEMLERİ denir. Normal denklemler alt alta yazılıp birlikte çözüldüklerinde b0 ve b1 tahmincileri bulunur. şeklindeki formüller yardımıyla da tahminciler bulunabilir.

  19. Ortalamadan Sapmalar Yoluyla En Küçük Kareler Denklemlerinin İspatı olduğundan Bu ifadenin her iki tarafını n ile böldüğümüzde

  20. veya elde edilir. Bu eşitlik ortalamalar orjinine göre regresyon denklemidir. Ortalamalar orjinine göre regresyon denkleminden tahmini anakütle regresyon denklemi şöyle yazılabilir: elde edilir. olmak üzere,

  21. Hata terimleri kareleri toplamı şu şekilde ifade edilebilir: Bu ifadenin ‘e göre türevi alınıp sıfıra eşitlendiğinde; elde edilir. için diğer bir formül ise şöyledir:

  22. Basit En Küçük Kareler Regresyon Modelinin Varsayımları • Varsayım 1: Hata terimi ortalaması sıfıra eşit stokastik bir değişkendir: • Hata terimi u, pozitif ve negatif her iki yöndeki çok sayıda sebeplerin toplamının etkisini göstermektedir. Bu sebepten anakütle hata terimi u, X’in her değeri için şansa bağlı olarak pozitif, negatif veya sıfır değerlerini belli bir ihtimalle alabilmektedir. Yani u stokastik bir değişkendir ve değerleri önceden kesin olarak bilinmemektedir.

  23. Bazı bağımsız değişkenlerin modele alınamaması, modelin matematiksel biçiminin yanlış seçilmiş olması, değişkenlerdeki ölçme hataları, fertlerin davranışlarının yaradılış icabı farklı olması gibi durumlar u’nun artı değer alabileceği gibi eksi değer de alabileceğini gösterir. • Modele dahil edilmeyen değişkenlerin etkisi, bazen Y’yi gözlenebilecek olan değerinden daha büyük bazen de daha küçük değerli yapabilecektir. Yani genelde, sürekli olarak artış yönünde veya sürekli olarak azalış yönünde olan sapmalar(farklar) beklenmeyecektir. Bu da u’nun stokastik olduğu anlamına gelir.

  24. u’lar sürekli artan veya sürekli azalan bir görünüm arzetmezler, düzensiz bir görünüm sergilerler. • Ayrıca, ui nin muhtelif değerleri birbirinden bağımsız stokastik değişkenlerdir. • Tüketim örneğinde, u’nun stokastik ve değerlerinin birbirinden bağımsız olması şöyle açıklanabilir: Bir hane için ui hata terim değerini pozitif elde etme ihtimali ne artar, ne de azalır. Ayrıca u hata terimi değerlerinin dağılımının normal, ortalamasının sıfır ve varyansının olduğunu varsayacağız.

  25. Sonuç olarak, yazılabilir. Yani ui ler, birbirinden bağımsız, sıfır ortalamalı, eş,t varyanslı normal dağılımlıdır.

  26. Varsayım 2: Hata terimi u normal dağılımlıdır: • EKK tahmincilerinin ihtimal dağılımları, ui nin ihtimal dağılımı hakkında yapılan varsayıma bağlıdır. Bu sebepten b tahminleri konusunda bir test uygulamak gerektiğinde (t,F testi gibi)dağılımlarının normal olması gerekir, bu da ui nin dağılımının normal olmasını gerektirmektedir. • Uygulamalarda anakütle u değerleri bilinmediğinden, Merkezi Limit Teoremi’ne göre normal dağıldıkları kabul edilir.

  27. E(ui)=0 ui değerleri u’ların normal dağılımı

  28. Normal dağılım eğrisinde, absiste u’nun ortalamasına (0) tekabül eden noktadan çıkılacak dikmenin iki tarafı tam bir simetri arzeder. ui normal dağılıyorsa, EKK nin tahmincileride normal dağılırlar. • Uygulamalarda u’nun dağılımının normal olup olmadığı, Lilliefors grafik testi, χ2 uygunluk testi ve Jarque-Bera testi ile araştırılmaktadır.

  29. Varsayım 3: Hata terimi ui değerleri arasında ilişki(otokorelasyon) yoktur: • u’nun herhangi bir ui değeri kendisinden önceki uj değeri ile bağımlı değildir. Bu varsayım ui ve uj nin kovaryanslarının sıfıra eşit olmasını gerektirir: Kov(ui ,uj )=E[ui – E(ui)] [E[uj – E(uj)] varsayım 1’e göre E(ui)=E(uj)=0’dır. O halde, Kov(ui ,uj )=E(uiuj)=0, i≠j Bu varsayım, Kov(Yi ,Yj )=0, i≠j varsayımı demektir.

  30. Varsayım 4: Hata terimi ui nin varyansı eşittir,sabittir. (homoskedastiklik veya eşit varyanslılık) • ui nin varyansının her Xi için eşit olduğu varsayımı şöyle ifade edilmektedir: Var(ui │Xi)= E[ui – E(ui)]2 Varsayım 1’e göre E(ui)=0 olduğundan, Var(ui │Xi)= E[ui2] Var(ui │Xi)=σ2 veya Var(ui)=σ2 (1) (1) eşit varyanslık halini göstermektedir.

  31. Bu varsayımın anlamı şudur: Her Xi değeri için hata terimi ui’nin varyansı belli bir sabit sayı olup σ2 ’ye eşittir. Buna homoskedastiklik varsayımı, veya eşit(homo) dağılan(skedastik), veya eşit varyans varsayımı da denir.

  32. Varsayım 5: Bağımsız değişken X, hata terimi u ile ilişkili olmayıp, stokastik değildir: • Bağımsız değişken Xi ile hata terimi ui arasında ilişki yoktur, yani kovaryansları sıfıra eşittir: Kov(ui,Xi)= E[ui – E(ui)] [Xi – E(Xi)] Kov(ui ,Xi)=0 • X değişkeninin birden fazla olduğu çoklu modellerde de ui ile her X değişkeni arasındaki kovaryans sıfıra eşit olmalıdır: Kov(ui ,X2)=Kov(ui ,X3)=0

  33. Bu varsaymın anlamı şudur: Anakütle Regresyon Denkleminde Xi ve u’nun Y’ye etkisi ayrıayrıdır(toplanabilirdir). Eğer, X ile u arasında ilişki varsa, herbirinin Y bağımlı değişkeni üzerindeki etkisini ferdi olarak takdir edemeyiz. Eğer X ile u arasında aynı yönde pozitif ilişki varsa, u artarken X’de artacak ve u azalırken X’de azalacaktır. Benzer şekilde X ile ters yönde negatif ilişkili iseler, u azalırken X artar ve u artarken X azalır. Bu nedenle, X ve u’nun Y üzerindeki etkisinin tahmini mümkün olmayacaktır.

  34. Varsayım 6: Bağımsız değişken X, tekrarlı örneklere göre sabittir. Xi ile ui arasında ilişki olmaması yani Kov(ui,Xi)=0varsayımı X’in stokastik bir değişken olmamasını (tesadüfi dağılmasını) gerektirir. Bu da istatistiki olarak, anakütleden çekilebilecek tüm örnekler için X değerlerinin sabit değerli olduğunu gösterir.(aynı X değişkeni değerleri için ayrı Y değerleri sözkonusu.) Şöyleki: Kov(ui,Xi)= E[ui – E(ui)] [Xi – E(Xi)] Varsayım 1’e göre E(ui)=0 olduğundan:

  35. Kov(ui,Xi)= E[ui – E(ui)] [Xi – E(Xi)] E(ui)=0 Kov(ui,Xi)= E[ui(Xi – E(Xi)] = E[uiXi– uiE(Xi)] Xi ‘ler sabit kabul edilirse, E[E(Xi)]=E(Xi) Kov(ui,Xi)= E(uiXi)– E(ui)E(Xi) Varsayım 1’ e göre E(ui)=0’dır. Yani; Kov(ui,Xi)= E(uiXi) = 0 (Varsayım 5 gereği)

  36. Varsayım 7: Bağımsız değişken X’in varyansı sonlu pozitif bir sayı olmalıdır. Anakütleden çekilebilecek örneklerin herbiri için X değişkeni değerlerinin sabit kabul edilmesi,X değişkeninin tüm değerlerinin eşit olması demek değildir. Buna rağmen X değerlerinin aynı zamanda eşit olması halinde ,

  37. Burada tüm X değerleri eşit ise ‘dır ve payda olacaktır. Böylece sabit/0= olacağından ve dolayısıyla tahmin edilemeyecektir. Yani , Sonlu olmalıdır. Burada Q sonlu pozitif sabit bir sayıyı göstermektedir.

  38. Varsayım 8: Modelin spesifikasyonu doğrudur. İki değişkenli doğrusal regresyon modelinin EKK ile tahmininde kabul edilen en önemli varsayımlardan biri regresyon modelinin spesifikasyonunun doğru yapıldığı, modelin spesifikasyon hatası taşıyıp taşımadığıdır. Modele bazı değişkenlerin alınmaması , eğrisel bir fonksiyon alınması gerekirken doğrusal fonksiyon alınması, model değişkenleri konusunda hatalı varsayımlar yapılması hallerinde tahmin edilen fonksiyon güvenilir olmayacak, spesifikasyon hatalı olacaktır.

  39. Varsayım 9: Bağımsız değişkenler arasında İlişki yoktur. (Çoklu doğrusal Bağlantı olmaması Varsayımı) EKKY’nin bu varsayımı, birden fazla bağımsız değişkeni olan çoklu modellerle ilgilidir. Bu varsayıma göre ,çoklu modellerde bağımsız değişkenler arasında ilişki yoktur.

  40. Bağımlı Değişken Y nin Dağılımı Y bağımlı değişkeninin ortalaması Varyansı olduğu gösterilecektir.

  41. 1. Y nin ortalaması kendisinin beklenen değerine eşittir. Beklenen değer alındığında b1 ve b2 parametreler iken Xi değerleri değişmez değerler kümesinden geldikleri için bulunur.

  42. 2. Yi nin varyansı ve eşitliklerini varyans tanımında yerine koyarsak ui lar sabit varyanslıdır. Yani hepsinin varyansı sabit değerlidir. Yani

  43. 3. Yi nin dağılımı normaldir. Yi nin dağılımının biçimi, ui nin dağılımının biçimiyle belirlenir ve bu dağılım varsayım gereğince normaldir. b1 ve b2 sabit parametreler olmaları nedeniyle Yi nin dağılımını etkilemezler. Ayrıca Xi açıklayıcı değişkenin değerleri de varsayım gereğince değişmez değerler kümesinde olduğundan Yi nin dağılım biçimini etkilemezler.

  44. ÖRNEK REGRESYON DENKLEMİ Katsayıların Tahmini • Normal Denklemler ile, • Doğrudan Formüller ile, • Ortalamadan Farklar ile,

  45. Tüketim Gelir 75 80 88 100 95 120 125 140 115 160 127 180 165 200 172 220 183 240 225 260

  46. SY = n + SX SXY= SX + SX2 NORMAL DENKLEMLER SY=? , SX=? , SXY= ? , SX2= ? , n

  47. X YX Y X2 75 88 95 125 115 127 165 172 183 225 80 100 120 140 160 180 200 220 240 260 6000 8800 11400 17500 18400 22860 33000 37840 43920 58500 6400 10000 14400 19600 25600 32400 40000 48400 57600 67600 SY=1370 SX=1700 SYX=258220 SX2=322000

More Related