1 / 75

DOĞRUSAL OLMAYAN REGRESYON MODELLERİ…

DOĞRUSAL OLMAYAN REGRESYON MODELLERİ…. Tam Logaritmik Modeller. Yarı-Logaritmik Model *Log-Doğ Model(Üstel Model) *Yarı-Logaritmik Model Doğ - Log Model. Polinomial Model. …Tam Logaritmik Model…. X 3. Y. X 2. X 2. b 2 >1. 0< b 2 <1. Y 2. b 2 <0. Y 1. (X 3 sabit tutulduğunda).

Download Presentation

DOĞRUSAL OLMAYAN REGRESYON MODELLERİ…

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. DOĞRUSAL OLMAYAN REGRESYON MODELLERİ… Tam Logaritmik Modeller Yarı-Logaritmik Model *Log-Doğ Model(Üstel Model) *Yarı-Logaritmik Model Doğ - Log Model Polinomial Model

  2. …Tam Logaritmik Model… X3 Y X2 X2 b2>1 0<b2<1 Y2 b2<0 Y1 (X3 sabit tutulduğunda)

  3. …Tam Logaritmik Model(Üslü model-log-log Modeller-Sabit Elastikiyetli Modeller)… veya

  4. Y’nin eşiti üstteki denklemde yerine konursa

  5. …Tam Logaritmik Model… Birden fazla bağımsız değişken olduğunda lnY =lnb1 + b2 lnX2+ b3 lnX3 + ... + bk lnXk + u lne Y* =b1 *+ b2 X2*+ b3 X3* + ... + bk Xk* + u

  6. Y

  7. Uygulama 4.3 (207-210)

  8. Uygulama 4.3 (207-210)

  9. Uygulama 4.3 (207-210)

  10. Uygulama 4.3 (207-210) = 4.0458 = 4.9615 Sx*2 =7.3986 Sy*x* =2.6911

  11. Uygulama 4.3 (207-210) = 0.3637 = 4.0458 - (0.3637) 4.9615 = 2.2413 [ln(9.4046) = 2.2413]

  12. …Üretim Fonksiyonu… Y= Üretim X2=Emek ; X3=Sermaye = Emeğin Marjinal Verimliliği = Sermayenin Marjinal Verimliliği lnY = -3.4485 + 1.5255 lnX2 + 0.4858 lnX3 (t) (-1.43) (2.87) (4.82) n=15 Düz-R2= 0.8738

  13. …Yarı-Logaritmik Model…Log-Doğ Model(Üstel Model)

  14. …Yarı-Logaritmik Fonksiyon…Log-Doğ Model(Üstel Model) lnY = b1 +b2 X+ u = ( b2Y ) = b2 X

  15. Artış Hızı ModeliLog-Doğ Model(Üstel Model) lnY = b1 +b2 t + u = (Antilog b2 - 1) . 100 r Y= İş hacmi(1983-1988) r = (Antilog 0.131 - 1) . 100 = (1.13997 - 1) . 100 = (0.139971) . 100 = % 14

  16. Örnek 1969-1983 yıllarına ait GSMH verileri aşağıdadır. Buna göre büyüme hızını bulunuz.

  17. lnY = b1 +b2 t + u LOG(GSMH)= 6.963560+ 0.026854YIL t (461.0034) (16.16401) Prob (0.0000) (0.0000) = (Antilog b2 - 1) . 100 r = (Antilog 0.02685- 1) . 100

  18. Ücret ModeliLog-Doğ Model(Üstel Model) Aşağıdaki ücret modeli Uygulama 9.3’den alınmıştır.(s.427) Modelde: Y:Haftalık Kazanç ($) ; X2: Tecrübe ; X3 : Eğitim Kategorisi lnY = 1.19 + 0.033 X2 + 0.074 X3

  19. …Yarı-Logaritmik Fonksiyon… Doğ - Log Model Y = b1 +b2 lnX+ u

  20. …Yarı-Logaritmik Fonksiyon…Doğ - Log Model Y = b1 +b2 lnX+ u

  21. Hedonik Model Doğ - Log Model Y = b1 +b2 lnX2+ b3 lnX3 + u Fiyat = -1.749.97 + 299.97 ln(m2) - 145.09 ln(YatakOda) (t) (-6.8) (7.5) (-1.7) Prob. [0.1148] Düz-R2= 0.826 sd=11

  22. Polinomial Fonksiyonlar Y = b1 + b2 X + b3 X2 + b4 X3 + ... + bk+1 Xk + u Kuadratik Model: Y = b1 + b2 X + b3 X2 + u = b2 + 2b3 X = 0  X0= -b2 / 2b3 Eğer b3<0 ise X0 noktası maksimumdur = 2b3 Eğer b3>0 ise X0 noktası minimumdur

  23. Polinomial Fonksiyonlar Kuadratik Model OM= Ortalama Maliyet ; Çıktı =Üretimİndeksi GMİ= Girdi Maliyetleri İndeksi OM = 10.52 - 0.175 Çıktı + 0.0009 (Çıktı)2 + 0.02 GMİ (t) (14.3) (-9.7) (7.8) (14.45) Düz-R2=0.978 sd=16

  24. Polinomial Fonksiyonlar Kübik Model TM= Toplam Maliyet ;Q =Üretim Miktarı

  25. Polinomial Fonksiyonlar Kübik Model Y = b1 + b2 X + b3 X2 + b4 X3 + u TM = 141.76 + 63.47 Q - 12.96 Q2 + 0.94 Q3 s(bi) (6.37) (4.78) (0.98) (0.059) R2 =0.998 sd=6

  26. Bazen İktisat teorisinden kaynaklanan bazı sınırlamaların modelde yer alması istenebilir veya gerekebilir. Tüketim ve tasarruf eğilimlerinin toplamı, Coubb-Douglas modelinin katsayılarının toplamının ölçeğe göre sabit getiri olması için bire eşit olması gibi durumlarda doğrusal birleşimler söz konusu olabilir. Benzer şekilde bazı katsayıların birbirine eşitliği veya farklı doğrusal birleşimlerinin varlığı da arzu edilebilir. Bu tür sınırlamalara doğrusal sınırlamalar denir. DOĞRUSAL ve DOĞRUSAL OLMAYAN SINIRLAMALAR* * Bu konu, Selahattin GÜRİŞ,Ebru ÇAĞLAYAN,Burak GÜRİŞ EViews ile Temel Ekonometri Bölüm 6’dan alınmıştır.

  27. Regresyon modeli, ve sınırlama, olsun. Bu durumda, olacağından,

  28. olacak ve model ve için ve tanımlaması yapılırsa, olarak tahmin edilecektir. Katsayıların birbirine eşitliği de doğrusal sınırlamadır. Aynı modelde sınırlama olursa, modeli,

  29. olarak incelenebilir. Burada, tanımlaması ile model, olarak tahmin edilir.

  30. DOĞRUSAL SINIRLAMALARIN TESTİ Sınırlamalar doğrusal olduğunda test edilmeleri için t ve F testleri kullanılabilir. t TESTİ Katsayıların anlamlılığının veya belirli bir değere eşitliğinin söz konusu olduğu durumda açıklanan t testi, doğrusal sınırlamaların testi için de benzer bir şekilde kullanılır. Doğrusal sınırlama türlerinin gösterdiği farklılığa bağlı olarak t testinin uygulanması da farklılıklar gösterir. Sabit değer sınırlamasında katsayılardan birinin belirli bir değere eşit olması söz konusu olduğunda yapılacak t testi katsayıların belirli bir değere eşit olmasının testi ile aynıdır.

  31. Regresyonun orijinden geçip geçmediği test edilmek istendiğinde ise, sabit katsayının anlamlılığın yani sıfırdan farklı olup olmadığının test edilmesi gerekecektir. Sabit değer kısıtlaması birden fazla parametre için geçerli ise, t testi her biri için ayrı ayrı uygulanacaktır. Test işlemleri sınırlandırılmamış model ile yapılacaktır. İki parametrenin birbirine eşit olması, toplamlarının veya farklarının belirli bir değere eşit olması şeklinde bir sınırlama söz konusu ise, yani veya sınırlaması veya örneğin veya sınırlaması test edilecekse hipotezler daha önce açıklandığı gibi oluşturulur. Test istatistiği ise eşitlik için, olacak ve test edildiğinden

  32. olacaktır.Burada, olarak tahmin edilir. Toplamlar veya farklar söz konusu olduğunda test istatistiği, örneğin durumu için, ve ve

  33. olacaktır. Diğer işlemler daha önce açıklandığı gibi yapılacaktır.

  34. Uygulama: Türkiye’nin 1980-2000 yılları arasında elde ettiği turizm gelirlerini (TG) incelemek amacıyla Türkiye’ye gelen turist sayısı (TS) ve turizm yatırımları (TY) değişkenleri ile tam logaritmik model elde edilmiştir.Bulunan bu modelde turist sayısına ilişkin parametrenin turizm yatırımlarına ilişkin parametre ile eşit olduğunu sınayınız. LN(TG) = -3.1406+2.1888LN(TS)+1.1413LN(TY) s(bi) = (0.77) (0.523) (0.325) t = (-4.078) (4.185) (3.512) prob = [0.0000] [0.0000] [0.0000] Fhes= 461.68 R2=0.9777 prob [0.0000]

  35. thes= 3.273 > ttab= 1.734 H0 reddedilir.Sınırlama geçerli değildir. Parametrelerin birbirine eşit olduğu söylenemez.( )

  36. F TESTİ Doğrusal sınırlamaların testi için sınırlandırılmış ve sınırlandırılmamış modellerin tahmin edilmesi gereklidir. Bu test yapılırken sınırlama sayısı önemli değildir. Test söz konusu olan sınırlamaların geçerli olmaması halinde modellerin açıklandığı değişim miktarlarının aynı olacağı mantığına dayanmaktadır. Diğer bir ifade ile söz konusu olan sınırlamalar geçerli ise sınırlandırılmış ve sınırlandırılmamış modeller tarafından bağımlı değişkendeki değişmelerin açıklanma miktarları arasında istatistiksel olarak anlamlı bir fark olacaktır.

  37. Test için açıklanmayan değişme, yani artıkların kareleri toplamı kullanılabilir.Sınırlandırılmış modelin artıklarının kareleri toplamı ve sınırlandırılmamış modelin artıklarının kareleri toplamı ile ifade edilirse F test istatistiği, olarak hesaplanacaktır. Burada,

  38. ve test istatistiğinin dağılımı h ve (n- kU) serbestlik dereceli F dağılımıdır. F test istatistiği R2 değerleri ile, veya olarak da hesaplanabilir.

  39. Kimya Sanayii dalında faaliyet gösteren 15 firmanın üretimleri (Y), emek girdileri(X 2) ve sermaye girdileri (X3) aşağıdaki gibidir.

  40. (2.829909) (0.567107) (0.279795) t (-5.908387) (4.799623) (1.308917) prob (0.0001) (0.0004) (0.2151) n=15, k=3 Bu üretim fonksiyonu sınırlanmamış modeldir, zira b parametrelerine sınır konmamıştır. Şimdi b2 + b3 =1 sınırlamasını koymak isteyelim. 1. Aşama: 2. Aşama: anlamlılık seviyesi ve f1 =c=1 sınırlama, f2=n-k=15-3=12 sd. lerinde Ftab=4.75

  41. 3. Aşama: R2=0.915 Sınırlandırılmamış üretim fonksiyonunun belirlilik katsayısıdır. Sınırlandırılmış üretim fonksiyonunun belirlilik katsayısı; Bunu bulabilmek için sınırlandırılmış üretim fonksiyonunu belirleyip EKKY ile tahmin etmeliyiz, yani sınırlandırılmış EKKY’yı uygulamalıyız. Şöyleki; yukarıdaki sınırlandırılmamış orijinal üretim fonksiyonu; göre H0 hipotezi sınırlaması b2 + b3=1’i dikkate almak için alınmalıdır. Biz sonuncusunu alalım: veya

  42. Burada Y/X2, üretim/emek oranı; X3/X2, sermaye/emek oranı olup, iktisadi yönden önemlidir. İşte b1 ve b3 ‘ün denklemden EKKY ile tahmini sınırlandırılmış EKKY adını alır. b3’ü bu yöntemle bulduktan sonra b2 =1-b3’den b2’yi bulabiliriz. Üretim fonksiyonu için yani sınırlandırılmış EKKY tahmin sonuçları şöyledir: t (-0.853186) (2.954019)

  43. Şimdi formül uygulanabilir, 4. Aşama: %5 ve %10 önem düzeyinde, Fhes=72.253 > Ftab=4.75 H0 reddedilir. Yani sabit verimlilik reddedilir. Yani ilgili dönemde değeri %5 ve %10 anlamlılık seviyesinde 3.088129’un 1’den farklı olduğu kabul edilir. Buradan, istatistik testlerden anlamlılık seviyesinin tespitinin, testi gerçekleştirmeden önce yapılması gerektiği sonucu çıkmaktadır. Sınırlı EKKY tahminlerinden bulunduğuna göre olacaktır.

  44. Regresyon Modelinin Fonksiyonel Biçiminin Test Edilmesi (MWD) (1) (2) Bir doğ-doğ regresyon modeli ile log-log regresyon modelinden hangisinin tercih edileceğine karar vermek için MWD testini kullanabiliriz. H0: Doğ-doğ model geçerlidir H1: Log-log model geçerlidir.

  45. 1. ADIM: 1 nolu model (doğ-doğ) model tahmin edilir. 2. ADIM: 2 nolu model (log-log) model tahmin edilir. 3. ADIM: 1. adımdaki değerlerinin log. 4. ADIM: 5.ADIM: 4.adımda elde edilen Z değişkeni 1 nolu modeldeki doğrusal regresyon modeline bağımsız değişken olarak eklenir . Z değişkeninin katsayı tahmini istatistiksel olarak anlamlı ise H0 reddedilir.

  46. UYGULAMA: İzmir ilinde 1971(II)-1975(II) üçer aylık dönemlerinde on ikişer adetlik demet gül talebi incelenmiştir. Demet gül talebi Y bağımlı değişken, bir demet gülün fiyatı X2 ve ikame mal olarak da bir demet karanfilin fiyatıX3 bağımsız değişken olarak modele alınmıştır. Bu model hem doğ-doğ hem de log-log model olarak tahmin edilmiştir. Hangi model tercih edilmelidir? Doğ-doğ model: R2 = 0.776 Log-log model: R2 = 0.7292

  47. R2 = 0.7707 Zi değişkeni ile birlikte tahmin edilen doğrusal model H0: Doğ-doğ model geçerlidir H1: Log-log model geçerlidir. ttab = tn-k = t13,a =0.05 = 2.160 thes < ttab H0 reddedilemez.

  48. Bir ekonomideki bir para talebi modelinde MD=Para talebi, i=Faiz oranı, Y=Milli gelir, L=Likit aktifler stoku(Para dışındaki) değişkenleri yer almaktadır. 1960-1997 dönemi verileri ile bir ülke için şu fonksiyon tahmin edilmiştir. MD= 0.003 - 0.216(İ) + 0.52(Y) + 0.367(L) s(bi) (0.009) (0.112) (0.101) (0.102) Daha sonra bu değişkenlerle tam logaritmik model oluşturulmuştur. lnMD=0.412 - 2.325ln(i) + 1.982ln(Y) + 0.417ln(L) s(bi) (0.519) (0.102) (0.192) (1.562)

  49. Doğrusal modelin doğru model hipotezini test etmek için aşağıdaki model kurulmuştur. Gerekli hipotezleri kurup %5 önem seviyesinde hangi modelin tercih edileceğini söyleyiniz. MD= 0.01 - 0.038(i) + 0.23(Y) - 0.68(L) + 2.814(Zİ) s(bi) (0.004) (0.0026) (0.004) (0.512) (0.164) H0=Doğ-doğ model geçerlidir. H1=Log-log model geçerlidir. thes(17.159)>ttab(2.042) H0 reddedilir.Log-log model geçerlidir.

More Related