250 likes | 369 Views
N. Bernal, P. Binetruy, D. Cerdeno, E. Dudas, A. Falkowski, A. Goudelis, O. Lebedev, C. Munoz, E. Nezri, S. Pokorski, A. Romagnoni. Dark Matter: Why, Where, What, How?. Yann Mambrini Laboratoire de Physique Théorique Orsay, Université Paris XI.
E N D
N. Bernal, P. Binetruy, D. Cerdeno, E. Dudas, A. Falkowski, A. Goudelis, O. Lebedev, C. Munoz, E. Nezri, S. Pokorski, A. Romagnoni Dark Matter: Why, Where, What, How? Yann Mambrini Laboratoire de Physique Théorique Orsay, Université Paris XI Krakow, January 6th 2010
Overview I) The DM puzzle II) Direct Detection : principle, experiment and prediction III) Indirect detection : principle, experiment and prediction IV) Two SUSY candidates : neutralino and gravitino V) Complementarity with accelerator physics (LHC, ILC) VI) Extra U(1) candidate and sommerfeld effect VII) Conclusions and Perspectives
Galactic Scale CMB (WMAP) SUSY : neutralino, gravitino.. (Jungman) KK modes (Extra Dim.) (Servant, Tait) Extra U(1) boson (Arkani-Ahmed, Weiner) Sterile right handed neutrino (Shaposhnikov) Weak scale scalar (Tytgat) Dark Matter Evidences
Astroparticle (part 0) : data.... WMAP : 0.094 < W h2< 0.129 CDMS (10-100 GeV DM) DAMA excess, direct detection (< 10 GeV DM) PAMELA/ATTIC (> 1 TeV DM) INTEGRAL : 511 keV line excess (< MeV DM) HEAT : Positron excess, (100 GeV DM) EGRET : gamma excess (100 GeV DM) HESS, gamma excess (10 TeV DM)
I J Boltzmann Equation . dn dt = -3 H n (H = R / R) . 2 2 [ - neq ] - < s v> n -27 3 -1 2 3.10 cm s Wh ~ ~ 0.1 < sv > Astroparticle (part I) : Relic Density (W)
Direct Detection : principle XENON (1 evt per kg per year) : 10 kg – 100kg – 1T H U U NUCLEUS
Indirect detection from GC c FERMI (2008) g c HESS (Namibie, 2004) g dFg1 dNg< s v > d W d E 2 dEg4p M ∫r2 dl = 2 2 < s v > (100 GeV) -13 -2 -1 J ∆W Fg(cm , s ) ~ 1010 -29 3 -1 2 10 cm s M -27 3 -1 -11 2 3.10 cm s Wh ~ ~ 0.1 → Fg ~ 10J DW < sv >
Positrons flux c 2 e- c r 1 dNe+ 2 dEe+ = Qsource < s v > M e+ .db(E) dE K(E) * D f(E,r)+ * f(E,r) + [particle/cm3] df(E,r) dt Qsource = 20 kpc E*K(E) b(E) Dsource (E) ~ 3 kpc -0.2 ~ 1.8 (E/1GeV) [Salati]
~ ~ ~ ~ ~ ~ ~ ~ L = M1 BB + M2 WW + m Hu Hd B ( Bino) W ( Wino) ~ ~ ~ ~ ~ ~ +MZ B Hu + MZ W Hd + M2staut t ~ t (Stau) t Bosons Fermions B W ~ ~ ~ ~ Neutralino : ci= ZiB B + ZiW W + Ziu Hu + Zid Hd ~ Hd Hd (Higgsino down) ~ Hu (Higgsino up) Hu SUSY for dummies
Neutralino Dark Matter 1 .c ~ ~ ~ ~ .f Hd B W Hu .c A .f M1 0 . . 0 M2 . . . . 0 -μ . .-μ 0 M= M = 2 m large tanb Bino c A ~ ~ H+ W + Stau Z .c W M ~ m Bino M ~ m Higgsino + c c .c Stau 2 3 .c .c tau Z
The relic density constraints M0 M1/2 Neutralino ≡ Bino M1= M / 2 High fluxes Neutralino ≡ Higgsino Light High fluxes Neutralino ≡ Bino M1 = M / 2 Low fluxes
Complementarity between different detection modes .q .c .c .q .c .f .c .q .c .q .f .c .e+ .c .c .c .c .e+ .e- .c .c .e- .q .q WMAP EGRET HESS FERMI LHC CDMS XENON HEAT Pamela AMS ILC
Gravitino DM In alternative scenario, the gravitino can be the lightest SUSY particle (40 % of the SUSY publications in 2009) It can happen if the SUSY breaking is not gravitationally mediated (Gauge Mediation, sequestred sector..) : the mass of the gravitino is “liberated” from the SUSY spectrum The gravitino couple only gravitationally with the visible sector : it is stable and is produced in the reheating epoch of the universe : its thermal relic depends on the reheating temperature, Wh2 ~ TR / Mgravitino BUT the next to lightest SUSY particle is long lived too because can only decay into SM + gravitino with gravitational type interaction : It can affect the primordial nucleosynthesis (BBN).
BBN constraints LSP (gravitino) NLSP (stau) SM (tau) Mgravitino BBN q BBN (5000 seconds) q TR=109 GeV tau 1 / Mplanck => Long lived NLSP (> 5000 seconds) TR=107 GeV neutrino Mstau
Conclusions Several candidates can respect WMAP constraints Different experiments reach different parts of the parameter space Strong correlation/complementarity Future sensitivity will be able to test 80 percent of SUSY parameter space
Adiabatique Compression ( r ) arb. units Baryons Baryon falls in the central region to form galaxy ReReRedistribution of masses in the gravitational potential 200 Neutralinos NFW 100 NFW compressed 1.5 (r) ~ 1/r (NFW compressed) 0 -2 -1 1 -3 Log10( r) N-Body simulation (NFW, Moore..) Today baryon distribution ??? Baryon fall in the Galactic Center Redistribution of mass in the gravitational potential (r) ~ 1/r Mi ( ri ) ri = [ MCDM ( rf ) + Mb (rf )] rf
Indirect detection : Mass measurement GLAST, 3yrs XENON, 3 yrs
Complementarity Direct, Indirect and ILC Colinear or soft-gamma approximation
Direct detection Indirect detection Leptonic collider Masse +/- 5 GeV +/- 10 GeV 50 GeV +/- 10 GeV +/- 20 GeV +/- 40 GeV 100 GeV +/- 25 GeV +/- 60 GeV +/- 90 GeV 175 GeV 500 GeV Summary Colinear or soft-gamma approximation
Nbr evts .e+ .n .e- .n Background Eg The background Colinear or soft-gamma approximation
A leptonic collider as a Dark Matter detector ILC WMAP .c .e+ .e+ .c .c .e- .e- .c Ke .sprod .sann Colinear or soft-gamma approximation
Direct Detection : the background XENON SUSY