400 likes | 623 Views
GAIA-ESF Workshop – November , 5th 2012, Torino. A New for Exoplanet Imaging. Gaël Chauvin - IPAG/CNRS - Institute of Planetology & Astrophysics of Grenoble/France.
E N D
GAIA-ESF Workshop – November, 5th 2012, Torino A New for Exoplanet Imaging GaëlChauvin - IPAG/CNRS - Institute of Planetology & Astrophysics of Grenoble/France Collaborations: J.-L. Beuzit, A.M. Lagrange, D. Mouillet, J. Rameau & P. Delorme (IPAG/Fr); S. Desidera, D. Mesa & R. Gratton (Oss. Padova/It); A. Boccaletti, R. Galicher, D. Rouan & P. Baudoz (LESIA/Fr); D. Apai (Uv. Arizona/US); M. Meyer, S. Quanz & M. Reggianni (ETHZ)/Swi); M. Bonnefoy, W. Brandner & C. Mordasini (MPIA/Ger); C. Moutou, A. Zurlo& A. Vigan (LAM/Fr); J. Girard, C. Dumas, , J. Milli, D. Mawet & M. Kasper (ESO); S. Udry, J. Hagelberg (Geneva/Swi)…
Outline A New Era for Exoplanet Imaging I- Introduction: Why Imaging? II- Techniques & Strategy III- Results: What can we learn? IV – A New Era: VLT/SPHERE GAIA-ESF Workshop – November, 5th 2012, Torino
I- Introduction PlanetHunting Techniques Radial Velocity . Indirect technique: Doppler shift (Targets: quiet stars; activity) . Orbital & Physical properties: > Mp.sin(i), P, e, a, ω &T0 > Spin-Orbit Alignment > Architecture & Stability > exo-Earths & Habitable Zone Dumusque et al. 12; Triaud et al. 11 . Statistics: more than 800 exoplanets > Occurrencedown to Super-Earths > Planetary host: Fe/H & binarity De Sousa et al. 11; Udry & Santos 07 http://exoplanet.eu/
I- Introduction PlanetHunting Techniques Transit . (In)direct technique: 1ary/2ary eclipse. (Targets: quiet stars; activity; crowded fields) . Orbital & Physical properties: > R*/Rp, Mp, P, a, i, T0 > Planetary Interiors > Multiple: Architecture & Stability > Circumbinary planets Leger et al. 09; Doyle et al. 11; Balatha et al. 12 . Transmission/emission spectroscopy > Composition (H20, CO, NaI, KI... Haze) > Vertical T-P structure, atmospheric circulation & evaporation Swain et al. 08; Knutson et al. 09; Desert et al. 12 http://exoplanet.eu/
I- Introduction PlanetHunting Techniques • μ-lensing • . Indirect technique: Unique Rel. Event • (Targets: Crowded fields; probability) • . Orbital & Physical properties: • > Mp, M*, d, P, a (1-5 AU) • > Super-Earths • . Free-floating, wide orbit planets? • Gould et al. 06; Cassan et al. 12 Astrometry . Indirect technique: Reflex motion (Targets: Nearby stars) . Orbital & Physical properties: > Mp, P, i, e, a, ω, T0(1-5 AU) Bean et al. 07, 08; Benedict et al. 02, 10 Muterspaugh et al. 10; Sozzetti et al. 10 http://exoplanet.eu/
I- Introduction PlanetHunting Techniques • Direct Imaging • . Direct technique: Planet’s photons • (Targets: young & nearby stars) • . Orbital & Physical properties: • > L, a, e, i, ω, T0 • > Giant planets at wide orbits (>10 AU) • > Multiple: Architecture & Stability • > Planet – disk connection • Chauvin et al. 05, 10; Lafrenière et al. 07 • Soummer et al. 11; Vigan et al. 12 • . High-contrast spectroscopy • > Non-strongly irradiated EGPs • > Low-gravity, composition, non-LTE • chemistry, cloud coverage... • Janson et al. 10; Bonnefoy et al. 09, 12 http://exoplanet.eu/
Outline A New Era for Exoplanet Imaging I- Introduction: Why Imaging? II- Techniques & Strategy III- Results: What can we learn? IV – A New Era: VLT/SPHERE GAIA-ESF Workshop – November, 5th 2012, Torino
II- Strategy Imaging: an observing challenge! Detect/characterize something faint, angularly close to something bright. • High image quality • - High angular resolution, PSF Stability • - Calibration of static aberrations • Stellar Halo Brightness • - Halo attenuation/PSF subtraction • - Speckle noise • Intrinsic companion faintness • - Long overall observations; • HIP95270 (Tuc-Hor) • VLT/NaCo H, 10” by 10” • (?) • (?)
II- Strategy Dedicated Instrumentation High Angular Resolution Spacetelescope 10m-telescopes + AO system HST Gemini S/N VLT/NACO LBT/Arizona Subaru/HiCIAO Keck
II- Strategy Impressive evolution High Angular Resolution Adaptive optics (recover diffraction-limit resolution)
II- Strategy The art of PSF subtraction • High Contrast at inner angles • Main limitation (<1.0-2.0’’): Atmospheric & instrumental speckles • Coronagraphy • - Occulting and Lyot-pupil mask • - 4QP Mask, Boccaletti et al. 08 • - new: PIAAC, ALC, APC& Vortex • Differential Imaging • - Polarimetric (PDI) • - Spectral (SDI), Close et al. 05 • - Angular (ADI), Marois et al. 06 • Post-processing tools • - LOCI, Lafrenière et al. 07 • - ANDROMEDA,Mugnier et al. 10 • - KLIP/PCA, Soummer et al. 12 Field Rotation VLT/NaCo 1“ (i.e 19AU@19pc)
II- Strategy The art of PSF subtraction • High Contrast at inner angles • Main limitation (<1.0-2.0’’): Atmospheric & instrumental speckles • Coronagraphy • - Occulting and Lyot-pupil mask • - 4QP Mask, Boccaletti et al. 08 • - new: PIAAC, ALC, APC& Vortex • Differential Imaging • - Polarimetric (PDI) • - Spectral (SDI), Close et al. 05 • - Angular (ADI), Marois et al. 06 • Post-processing tools • - LOCI, Lafrenière et al. 07 • - ANDROMEDA,Mugnier et al. 10 • - KLIP/PCA, Soummer et al. 12 Field Rotation VLT/NaCo 1“ (i.e 19AU@19pc)
II- Strategy Detection Performances High Contrast at inner angles Coronagraphy or SAT-Imaging combined with ADI, SDI (or PDI) Improved performances inside the IWAs: 0.1-2.0” Detection Limits: H-band Obs. Time ~10min Star, H = 5-6 (d = 30 pc) Detection Limits: H-band; Tobs = 60-90 min Star, H = 5-6 Down to ΔH = 14.0 @1.0”
II- Strategy Detection Performances High Contrast at inner angles Coronagraphy or SAT-Imaging combined with ADI, SDI (or PDI) Improved performances inside the IWAs: 0.1-2.0” Detection Limits: H-band Obs. Time ~10min Star, H = 5-6 (d = 30 pc) Detection Limits: H-band; Tobs = 60-90 min Star, H = 5-6 Down to ΔH = 14.0 @1.0” d = 30 pc, 10 Myr COND03 Evol. Models Baraffe et al. 03
II- Strategy OptimizedSamples Young, nearby stars Age < 200 Myr . Young, nearby associations Distance < 100 pc . access small sma, . enhanced sensitivity Spectral Types: AFGKM . AF: More massive EGPs? . M: favorable contrast V-band < 10.0 – 12.0 . AO-Full Performance limitation > All observed by GAIA NaCo Large Program’s sample, preparatory mission to SPHERE (Chauvin et al. 10)
Outline A New Era for Exoplanet Imaging I- Introduction: Why Imaging? II- Techniques & Strategy III- Results: What can we learn? IV – A New Era: VLT/SPHERE GAIA-ESF Workshop – November, 5th 2012, Torino
IV- Key results Family’s portrait 2M1207 DH Tau AB Pic SCR1845 CHXR 73 GJ 758 CT Cha 1RXJS609 GQ Lup WideorbitPMCs: - low mass KM stars - q = 0.02 – 0.2 or Δ > 200 AU Fomalhaut Hr8799 Beta Pic CloserPMCs: - A4V-A5V massive primaries - q < 0.005 ; Δ = 8 - 120 AU - CS Disk signatures Ref: Chauvin et al. 04; Itoh et al. 05; Chauvin et al. 05; Biller et al. 05; Luhman et al. 06; Thalmann et al. 09; Lafrenière et al. 08; Neuhauser et al. 05; Schmidt et al. 09; Lagrange et al. 10; Kalas et al. 08; Marois et al. 08,10...
IV- Key results OuterGiantPlanet Population Architecture & Stability Astrometry & Disk/Planet Orbits, dynamical interactions, resonances & long-term evolution Physics of Giant Planets Photometry & Spectroscopy Atmosphere & physical properties Occurrence & Formation Statistical properties (occurrence, planetary host dependency, disk properties) Formation Theories: CA, GI or CF
IV- Key results Physics of GiantPlanets Companion nature? PlanetSingle-band photometry Stellar properties: d & age Evolutionarymodels (Luminosity - Mass) . β Pictoris b, ΔJ = 10.6+-0.3 mag, . 12 Myr @ 19.3 pc, . Mass = 7 – 8 Mjup (“Hot-Start”models) > However, uncertainties in the model predictions > Dependence: formation mechanisms , gas accretion shock & initial conditions Field Rotation VLT/NaCo ADI imaging Marley et al. 07; Mordasini et al. 12 Bonnefoy et al. 12
IV- Key results Physicalproperties Atmosphere Planet’s SED Stellar properties: d & age Synthetic-Grid of spectra Atmosphericproperties . Radiative transfert code . Dusty Cloud Formation/Sedim. . Mol. opacity / Non-eqChem. βPic b, Teff = 1650 +- 150K, log(g) = 4.0±0.5, FeH = 0.0±0.5, R = 1.3+-0.2 RJup > dusty clouds (Lβ-type) Bonnefoy et al. 12
IV- Key results Orbital Properties & Architecture Imaging Exoplanet’s revolution Discovery: Nov 2003 ΔL’ = 7.7 mag, sep = 300 +- 15 mas Monitoring campaign: 2008 - now Recovery: Oct. 2009 Nov 2003 Oct 2009 Lagrange et al. 09, 10 Bonnefoy et al. 10, Quanz et al. 10 • N VLT/NaCo ADI imaging L’-band, β Pic b • 500 mas • E
IV- Key results Orbital Properties & Architecture Imaging Exoplanet’s revolution • Discovery: Nov 2003 • . ΔL’ = 7.7 mag, sep = 300 +- 15 mas • Monitoring campaign: 2008 - now • Recovery: Oct. 2009 • Astrometricfollow-up • . VLT/NaCo monitoring 2003 - 2012 Chauvin et al. 12 • N • E
IV- Key results Orbital Properties & Architecture Constraining the orbit MCMC Orbital fitting β Pic b, P = 17 - 21 yrs a = 8 - 10 AU e < 0.17 i = 88.5 +- 1.5 deg Ω = 212.5 +- 1.5 deg Chauvin et al. 12 • N • E
IV- Key results Orbital Properties & Architecture Constraining the orbit Planet – Disk connection . main disk, up to 20’’ (1000 AU), PAMD= 209.5+-0.3deg . β Pic b PAβ Pic b= 212.0+-1.3o > β Pic b in the disk’s warp, Lagrange et al. 12 Main disk Warp • 2“ • N • E • N • E
IV- Key results CA Limit Formation & Evolution In-situCoreAccretiondoes not workat > 20-30 AU > Core or Disk fragmentation ? Dodson –Robinson et al. 09; Boley et al. 09 > Innerlimitto the Core or Disk fragmentation? Dynamicalevolution & stability > outward migration (corotation torque), planetscattering & resonances Crida et al. 09; Scharf & Menou 09
Outline A New Era for Exoplanet Imaging I- Introduction: Why Imaging? II- Techniques & Strategy III- Results: What can we learn? IV – A New Era: VLT/SPHERE GAIA-ESF Workshop – November, 5th 2012, Torino
V- A New Era Upcoming instruments (mid-2013), GPI, Gemini Planet Finder(MacIntosh et al. 08) - Fast-high order adaptive optics system - Interferometricwave front sensing for static aberrations - NIR-IFU + Apodizedpupil Lyot coronagraph VLT/SPHERE (Beuzit et al. 08) - SAXO, Extreme AO system (ITTM-DM and DTTS, PTTS) - NIR (YJHK): IRDIS (Dual imaging Spectrograph) and IFU 3D-spectroscopy - VIS: ZIMPOL (Imaging Polarimeter) - Coronagraphs: Classical Lyot, A4P and ALC - GTO of 260 nights; 200 devoted to survey 300 nearby stars
V- A New Era SPHERE concept
V- A New Era SPHERE Instruments Coronography: no /4Q / Lyot Rotation at Nasmyth: • Pupil-stab. (instrument fixed wrt tel.) • Field-stab (slit spectro, long DIT…) • No rotation: minimize crosstalk…) AO sensitivity for high contrast: R=9.5 for NIR; R=9 for R; R=7.8 for whole VIS Separation with improved contrast: 2 - 20 λ/D, ie 30-300 mas in R, or 80 – 800 mas in H Mode switching: not VIS and NIR in same night
V- A New Era Observingwith SPHERE • SPHERE Timeline, • Fall 12, Tests @IPAG • March 13 PAE • April 13 Shipping • May 13 Integration @Paranal • July& Dec 13First Light & Commissioning phase1, 2 & 3 • March 14CfP 94, offered to the ESO community • - All offered mode fully supported/documented, • - Calibration & data reduction pipeline • GTO (260 nights over 3 - 5 yrs; 26-40 nights/semester) • > NIRSUR: SPHERE Giant Planet Search (200 nights) • - 400-600 stars observed (Age < 1 Gyr; SpT: AFGKM; < 100-150 pc) • - Occurrence & properties of the giant planet population at wide orbits (> 10 AU)
V- A New Era Synergywith GAIA
V- A New Era Synergywith GAIA SPHERE GAIA ELT-PCS Mesa et al. 11 Kasper et al. 10 Lattanzi & Sozzetti 10 http://exoplanet.eu/
V- A New Era Synergywith GAIA GAIA’s planetary systems About 10 000 EGPs with GAIA for (d < 200 pc, V < 13) stars. Marginal overlap with SPHERE - favorable cases (very nearby), GAIA > planet’s orbital phase - Follow-up for Photometric/Spectroscopiccharacterization > but, will have to wait for ELT-(IFU & PCS) for systematic study Outer regions of GAIA’s planetary systems - Could help to constrain GAIA astrometric solutions (long-periods) - Outer planets detection & characterization in synergy with GAIA > Architecture, Dynamical evolution, Stability & Formation To conclude: GAIA will provide a rich list of targets for Imaging surveys
Thank You! GAIA-ESF Workshop – November, 5th 2012, Torino
IV- Key results Physicalproperties Mass determination & related uncertainties Planet photometry & spectroscopy Stellar properties: d & age Evolutionary model predictions . not-calibrated at young ages . Role of initial conditions “Hot-start” (Baraffe et al. 03; Burrows et al. 03) “Cold start” – Core Accretion (Marley et al. 07; Fortney et al. 08) Hot start Hot start Cold start
IV- Key results Physicalproperties Mass determination & related uncertainties Planet photometry & spectroscopy Stellar properties: d & age Evolutionary model predictions . not-calibrated at young ages . Role of initial conditions “Hot-start” (Baraffe et al. 03; Burrows et al. 03) “Cold start” – Core Accretion (Marley et al. 07; Fortney et al. 08) β Pic b 7-8 MJup Hot start Hot start Cold start
IV- Key results Orbital Properties & Architecture Constraining the orbit (MCMC Orbital fitting) • N • E
IV- Key results Orbital Properties & Architecture Disk-Planet connection Oct 2009 • N • 2“ • E • Imaging the innerdisk of β Pictoris • .the main disk, up to 20’’ (1000 AU), PAMD = 209.5+-0.3deg • . The warp-component, 0 – 5’’ (0 – 100 AU), PAW = 212.5 deg • . Whereis the planet? Lagrange et al. (12) • N • 500 mas • E
IV- Key results Orbital Properties & Architecture Disk-Planet connection Nov 2003 Oct 2009 Oct 2009 Main disk • N Warp • 2“ • E • Imaging the innerdisk of β Pictoris • .the main disk, up to 20’’ (1000 AU), PAMD = 209.5+-0.3deg • . The warp-component, 0 – 5’’ (0 – 100 AU), PAW = 212.5 deg • . Whereis the planet? Lagrange et al. (12) • N • 500 mas • E
IV- Key results Orbital Properties & Architecture Disk-Planet connection Nov 2003 Oct 2009 Oct 2009 Main disk • N Warp • 2“ • E • Imaging the innerdisk of β Pictoris • . the main disk, up to 20’’ (1000 AU), PAMD = 209.5+-0.3deg • . The warp-component, 0 – 5’’ (0 – 100 AU), PAW = 212.5 deg • . Planet’s position angle: PAb = 212.0+-1.3 deg • > Probablynot in the main disk, but in the warp… • > Innerwarpeddisksculpted by the planet: (Mb < 20 Mjup ) • N • 500 mas • E Lagrange et al. (12)