1 / 38

The Magnetic Phase Diagram of (Sr,Ca) 2 (Ru,Ti)O 4 Revealed by m SR

The Magnetic Phase Diagram of (Sr,Ca) 2 (Ru,Ti)O 4 Revealed by m SR. Jeremy P. Carlo jeremy.carlo@nrc.gc.ca. Columbia University Canadian Neutron Beam Centre, National Research Council. June 2, 2010. Outline. Overview Correlated electron materials Magnetic order Superconductors

lemuel
Download Presentation

The Magnetic Phase Diagram of (Sr,Ca) 2 (Ru,Ti)O 4 Revealed by m SR

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. The Magnetic Phase Diagram of (Sr,Ca)2(Ru,Ti)O4 Revealed by mSR Jeremy P. Carlo jeremy.carlo@nrc.gc.ca Columbia University Canadian Neutron Beam Centre, National Research Council June 2, 2010

  2. Outline • Overview • Correlated electron materials • Magnetic order • Superconductors • The SR method • Local probe of magnetism • (Sr,Ca)2RuO4 & Sr2(Ru,Ti)O4 • Superconductivity • Magnetic Phase Diagram

  3. Overview • Relation between magnetic order & superconductivity • BCS: Cooper pairs: electron-phonon interaction • High-Tc: magnetic fluctuations more important • “Canonical” cuprate phase diagram: • Parent compound: AF • Magnetic order close to SC dome

  4. Overview • Ongoing questions: • Behavior of different families of unconventional SCs? Cuprates Heavy fermion SCs Organic SCs Sr2RuO4 Fe pnictides etc. • How do magnetism / magnetic fluctuations relate? • “Normal” state behavior, M-I / structural links? • Holy Grail: • What is the comprehensive theory of unconventional superconductivity? • Present Study

  5. The SR method • Production of muons • Protons extracted from cyclotron/synchrotron • p+ low Z production target → ++ stuff • +→ ++  • parity violation: beam is spin polarized • separate out positrons, etc. • collimate / steer beam to sample Polarized muon sources: TRIUMF, Vancouver BC PSI, Switzerland ISIS, UK (pulsed) KEK, Japan (pulsed)

  6. Continuous-beam SR • Muon beam • Positive muons + • Can rotate polarization • Insert muons one at a time • Come to rest • Interstitial sites • Near anions • Along bonds

  7. Decay Asymmetry Muon spin at decay Detection: +→ e++ + e e = E / Emax normalized e+ energy

  8. e+ detector U incoming muon counter sample e+ m+ detector time D 2.5 e+ detector D

  9. e+ detector U incoming muon counter sample e+ m+ detector time D 2.5 e+ detector D U 1.7

  10. e+ detector U incoming muon counter sample e+ m+ detector time D 2.5 e+ detector D U 1.7 D 1.2

  11. e+ detector U incoming muon counter sample e+ m+ detector time D 2.5 e+ detector D U 1.7 D 1.2 D 9.0 + 106-107 more…

  12. Histograms for opposing counters asy(t) = A0 Gz(t) (+ baseline) a Total asymmetry ~0.2-0.3 Muon spin polarization function 135.5 MHz/T Represents muons in a uniform field

  13. Field configurations • ZF-SR: •  sees: field due to nearby moments • Spontaneous ordering? • Precession • Rapid relaxation T-dependence (in-plane doping) vs. out-of-plane doping T-dependence (out-of-plane doping) vs. in-plane doping Example (CuCl)LaNb2O7 La NbO6 [CuCl]+

  14. Field configurations Example • LF-SR: •  sees: skewed local field distribution • Static order • Decoupling if Happl ~ Bint • Dynamic order • No decoupling • Drift of “1/3 tail” H  initial muon spin

  15. Field configurations • wTF-SR: • Calibration of baseline (a), total asymmetry (A0) •  sees: • (mostly) applied field (paramagnetic state), • appl. + internal fields (ordered state) H  initial muon spin Determine ordered, PM fractions Example

  16. Field configurations • (strong) TF-SR: • Order induced by applied field • Metamagnetism, etc. • Vortex lattice in Type-II SC • Rlx √<B2>  1/2  ns /m* •  = penetration depth • ns /m* = superfluid density • Polyxtal samples: distribution broadened ~ Gaussian • => Gaussian rlx • => 1/2 • => sf. density H  initial muon spin J. E. Sonier, 1998 & 2007

  17. Srn+1RunO3n+1 RuO66 • Ruddlesden-Popper series • n=: SrRuO3(113) • perovskite structure • Ferromagnetic, Tc 165K • n=3: Sr4Ru3O10(4-3-10) • multi-layered structure • FM, Tc 105K • n=2: Sr3Ru2O7 (327) • quantum metamagnetism • FM, AF fluctuations • mag. ordering w/ Mn • n=1: Sr2RuO4 (214) • Unconventional SC Tc 1.5K • Spin-triplet pairing, p-wave • isostructural to LBCO, LSCO Sr

  18. (Sr,Ca)RuO3 = ‘113’ Past Work: • n= • 3-D structure • Ca/Sr substitution • SrxCa1-xRuO3 • isoelectronic doping • FM suppressed x 0.25 • Phase separation, QPT

  19. Sr2RuO4 = ‘214’ Maeno et al. 1994 MacKenzie & Maeno, 2003 Fermi surface: • n=1 • SC state (Maeno et al. 1994) • Tc up to 1.5 K • NMR: Spin-triplet pairing • TRSB – (Luke et al. 1996) distinguish between p-wave states • Incommensurate spin fluctuations q ≈ (0.6/a, 0.6/a, 0) • Normal state: 2-D Fermi liquid • Doping: • “Out-of-plane:” Ca on Sr site: SrxCa2-xRuO4 • “In-plane:” Ti on Ru site: Sr2Ru1-yTiyO4 • Small doping on either site suppresses SC Luke et al. 1996

  20. Ca2RuO4 • AF insulator, moment 1.3B • Competition between A- and B- type ordering • TN  110-150K • Ca doping induces Mott transition • Decreased bandwidth • Increased on-site Coulomb repulsion • → Increased U/W • Ru-Ru in-plane dist > Sr2RuO4 • RuO6 flattening, tilting

  21. Ca2-xSrxRuO4 Susceptibility @ 2K: • M-I transition near x=0.2 (I-II) • Near x=0.5: (II-III) • Sharp increase in susceptibility • Correlations more FM-ish • Low susc @ higher x Old Picture: Ordering at low x only Antiferro. near x=0 Susc. peak near x=0.5 Paramagnetic at higher x SC at x=2 • SR: • Rapid relaxation observed 0.2 ≤ x ≤ 1.6 • Peaks near x 0.5, 1.5 • Ordered ground state throughout! Nakatsuji & Maeno, 2000. Nakatsuji & Maeno, 2003.

  22. Sr2Ru1-yTiyO4 • y=0: SC Sr2RuO4 • <0.2% Ti doping suppresses Tc • >2.5% doping induces magnetic ground state • neutrons: Braden et al.(2002) • Incommensurate AF in y=0.09 • q (0.3, 0.3, qz) • SR: rapid relaxation with increasing y. from MacKenzie et al. 2003

  23. Experiments • Samples • (Ca2-xSrx)2RuO4x = 0.0, 0.2, 0.3, 0.5, 0.57, 0.65, 0.9, 1.0, 1.4, 1.5, 1.6, 1.8, 1.95 • Sr2(Ru1-yTiy)O4y = 0.01, 0.03, 0.05, 0.09 • single xtals from Kyoto U. (Maeno et al. or Tsukuba (Yoshida et al. • ZF- & LF-mSR: M20 (LAMPF) and/or M15 (DR) • DC Susceptibility: ZFC, FC, H ~ 50-100 G Dilution fridge 15mK < T < 10K He gas-flow cryo 1.7K < T < 300K

  24. Ca2RuO4 ZF-SR Ca2RuO4 • SR spectra: • Sum of 2 frequencies

  25. ZF-SR Temperature Scans (Ca,Sr) system

  26. ZF-SR Temperature Scans (Ru,Ti) system

  27. Edwards-Anderson order parameter Uemura “spin glass” function (Uemura, 1985): dynamic + static das “root-exponential” “Lorentzian Kubo-Toyabe” Field width as = a √Q ld = 4a2(1-Q)/n Fluctuation rate

  28. ZF Relaxation vs. Temp: Magnetic ordering! Define: Rlx = sqrt ( d2 + as2 ) Fit to: Rlx(T) = R [ 1 – (T/To)g] zoom all Ti only Ca only

  29. LF @ base temp: decoupling → static order Fit to tanh(H/Ho) Static ordering at base temp!

  30. LF temp scans: map out dynamics

  31. Comparison of ZF & LF field estimates tanh(H/Ho) R [ 1 – (T/To)g ]

  32. Adapted from Braden et al. (2002) Neutrons: Braden Muons: present study

  33. DC Susceptibility Curie-Weiss: more AF

  34. Old view: New View:

  35. Summary: (Sr,Ca)2(Ru,Ti)O4 Past: Sr2RuO4 p-wave SC Tc 1.5K, TRSB magnetic fluctuations Sr2Ru1-yTiyO4 y  0.002 suppresses SC neutrons: incommensurate AF y = 0.09 Ca2RuO4 AF insulator TN 100-150K Sr2-xCaxRuO4 M-I transition x0.2 susceptibility peak x0.5 New: Sr2-xCaxRuO4 muons : magnetic order over almost entire range x = 0: commensurate AF, gone by x = 0.2 peaks x  0.5 (FM-ish?), 1.5 (more AF) incommensurate AF / SDW ? need long-range magnetic probe! Sr2Ru1-yTiyO4 muons: rapid relaxation y ≥ 0.03 susc: large negative w → AF

More Related