220 likes | 368 Views
Selamat Datang Dalam Kuliah Terbuka Ini. Kuliah terbuka kali ini berjudul “ Pilihan Topik Matematika -I”. Disajikan oleh Sudaryatno Sudirham melalui www.darpublic.com. Isi Kuliah Fungsi dan Grafik Fungsi Linier Gabungan Fungsi Linier Mononom dan Polinom Bangun Geometris
E N D
Isi Kuliah • FungsidanGrafik • Fungsi Linier • GabunganFungsi Linier • MononomdanPolinom • BangunGeometris • FungsiTrigonometri • GabunganFungsi Sinus • Fungsi Log Natural, Eksponensial, Hiperbolik • Koordinat Polar
Sesipertamainiakanmembahas FungsidanGrafik
Fungsi PengertianTentangFungsi (PembahasanTentangFungsidanGrafik dibatasipadafungsi dengan peubah bebas tunggal yang berupa bilangan nyata) Apabila suatu besaran y memiliki nilai yang tergantung dari nilai besaran lain x maka dikatakan bahwa y merupakan fungsi x
Contoh: panjang sebatangbatang logam (= y) merupakan fungsi temperatur (= x) Secaraumumpernyataanbahway merupakanfungsix dituliskan ydisebutpeubahtakbebas nilainyatergantung x xdisebutpeubahbebas bisabernilaisembarang Walaupunnilaixbisaberubahsecarabebas, namunnilaixtetapharusditentukansebatasmanaiabolehbervariasi Dalampelajaraninikitahanyaakanmelihat x yang berupabilangannyata. Selainbilangannyatakitamengenalbilangankompleks yang dibahasdalampelajaranmengenaibilangankompleks.
a b a b Domain Domain ialahrentangnilai (interval nilai) di manapeubah-bebasx bervariasi. Ada tigamacamrentangnilaiyaitu: rentang terbuka a < x < b a b a dan b tidak termasuk dalam rentang rentang setengah terbuka a x < b a masuk dalam rentang, tetapi b tidak rentang tertutup a xb a dan b masuk dalam rentang
Sistemkoordinat x-y ataukoordinatsudut-siku (koordinat Cartesian, dikemukakanolehdes Cartes) Bidangdibatasiolehduasumbu, yaitusumbumendatar yang kitasebutsumbu-x dansumbutegak yang kitasebutsumbu-y. y 3 Bidangterbagidalam 4 kuadranyaituKuadranI, II, III, dan IV Posisititikpadabidangdinyatakandalamkoordinat [x, y] sumbu-y 2 1 x 0 sumbu-x Q[-2,2] -2 -1 0 1 2 3 4 -4 -3 -1 II I P[2,1] -2 -3 -4 III IV S[3,-2] R[-3,-3]
KurvadariSuatuFungsi Kita lihatfungsi: Setiapnilaixakanmenentukansatunilaiy 2,5 y Kurva 2 R 1,5 Q Δy Titik P, Q, R, terletak pada kurva 1 Δx 0,5 0 Kemiringankurva: x 0 1 2 3 4 P -0,5 -1 (kitabaca: “delta x per delta y”)
Suatu fungsi y = f(x) yang terdefinisi di sekitar x = c dikatakan kontinyu di x = c jika dipenuhi dua syarat: (1) fungsi tersebut memiliki nilai yang terdefinisi sebesar f(c) di x = c; (2) nilai f(x) akan menuju f(c) jika x menuju c; pernyataan ini kita tuliskan sebagai yang kita baca:limit f(x) untuk x menuju c sama dengan f(c). Kekontinyuan Suatu fungsi yang kontinyu dalam suatu rentang nilai x tertentu, akan membentuk kurva yang tidak terputus dalam rentang tersebut.
Contoh: y = u(x) y Terdefinisikan di x = 0 1 yaituy|x=0 = 1 (y untuk x = 0 adalah 1) 0 x 0 y 1 Takterdefinisikan di x = 0 y = 1/x (y untuk x = 0 tidakdapatditentukannilainya) x 0 -10 0 5 10 -5 y = 1/x -1
Kesimetrisan • Jika fungsi tidak berubah apabila x kita ganti dengan x maka • kurva fungsi tersebut simetris terhadap sumbu-y; • 2. Jika fungsi tidak berubah apabila x dan y dipertukarkan, kurva • fungsi tersebut simetris terhadap garis-bagi kuadran I dan III. • 3. Jika fungsi tidak berubah apabila y diganti dengan y, kurva • fungsi tersebut simetris terhadap sumbu-x. • 4. Jika fungsi tidak berubah jika x dan y diganti dengan x dan y, • kurva fungsi tersebut simetris terhadap titik-asal [0,0].
Contoh: tidak berubah bila x diganti x y = 0,3x2 6 y (simetristerhadapsumbu-y) 3 tidak berubah jika x dan y diganti dengan x dan y y = 0,05x3 (simetristerhadaptitik [0,0]) 0 x -6 -3 0 3 6 tidak berubah jika: x diganti x x dan y diganti dengan x dan y x dan y dipertukarkan y diganti dengan y -3 y2 + x2 = 9 -6
8 y 4 x 0 0 2 4 -4 -2 -4 -8 PernyataanFungsiBentuk Implisit Pernyataanfungsi • disebutbentukeksplisit. dapatdiubahkebentukeksplisit Pernyataanbentukimplisit Walaupun tidak dinyatakan secara eksplisit, setiap nilai peubah-bebas x akan memberikan satu atau lebih nilai peubah-tak-bebas y
Fungsi Bernilai Tunggal Fungsibernilaitunggaladalahfungsi yang hanya memiliki satu nilai peubah-tak-bebas untuk setiap nilai peubah-bebas Contoh: 1,6 8 x 0 y y 0 1 2 0,8 4 -0,8 y x x 0 -1,6 0 0 0 1 2 -1 1 2 3 4 0,8 y 4 y 0 x 2 0 1 2 3 4 x 0 -0,8 -4 -2 0 2 4
Fungsi Bernilai Banyak Fungsibernilaibanyakadalahfungsi yang memilikilebihdarisatunilaipeubah-tak-bebas untuksetiapnilaipeubah-bebas Contoh: 10 2 y y 5 1 x x 0 0 0 1 2 3 0 1 2 3 -5 -1 -2 -10
Fungsi Dengan Banyak Peubah Bebas Secara umum kita menuliskan fungsi dengan banyak peubah-bebas: Fungsi dengan banyak peubah bebas juga mungkin bernilai banyak, misalnya Fungsi ini akan bernilai tunggal jika dinyatakan sebagai
y rcos P r rsin x Sistem Koordinat Polar Selain sistem koordinat sudut-siku di mana posisi titik dinyatakan dalam skala sumbu-x dan sumbu-y, kita mengenal pula sistem koordinat polar. Dalam sistem koordinat polar, posisi titik dinyatakan oleh jarak titik ke titik-asal [0,0] yang diberi simbol r, dan sudut yang terbentuk antara r dengan sumbu-x yang diberi simbol Hubungan antara koordinat sudut siku dan koordinat polar adalahsebagaiberikut Mengenaikoordinat polarakankitapelajarilebihlanjut di sesiterakhir. Berikutinihanyasekedarcontoh.
3 y P[r,] 2 r 1 0 x -5 -3 -1 1 -1 -2 -3 Contoh: Bentukinidisebutcardioid
P[r,] y = 2 2 y 1,5 r 1 0,5 0 -1 0 1 2 3 x -0,5 -1 Contoh:
Kuliah Terbuka PilihanTopikMatematika Sesi 1 SudaryatnoSudirham