1 / 55

Descrição Matemática de Sistemas (C. T. Chen, Capítulo 2)

Descrição Matemática de Sistemas (C. T. Chen, Capítulo 2). Sistemas Lineares. Supõe-se que a resposta a uma dada entrada é única. Esta relação única entre entrada e saída, excitação e resposta, causa e efeito, é essencial. Sistemas: SISO (Single Input, Single Output):

levi
Download Presentation

Descrição Matemática de Sistemas (C. T. Chen, Capítulo 2)

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Descrição Matemática de Sistemas(C. T. Chen, Capítulo 2) • Sistemas Lineares

  2. Supõe-se que a resposta a uma dada entrada é única. Esta relação única entre entrada e saída, excitação e resposta, causa e efeito, é essencial. Sistemas: SISO (Single Input, Single Output): MIMO (Multiple Input, Multiple Output): SIMO (Single Input, Multiple Output):

  3. Descrição matemática de sistemas • Um sistema é dito de tempo contínuo se aceita sinais de tempo contínuo como entrada e gera sinais de tempo contínuo na saída. Entra ou, e sai ou , sendo (´ significa transposto). varia de - a +, em passo infinitesimal. • Um sistema é dito de tempo discreto se aceita sinais de tempo discreto como entrada e gera sinais de tempo discreto na saída. Entra ou , e sai ou , sendo .Todos os sinais têm o mesmo tempo de amostragem , e é um inteiro variando de - a +. • Um sistema é chamado sem memória se sua saída em depende somente da entrada atual (em ). • Um sistema é chamado com memória se a saída em depende da entrada atual, passada e futura. • Um sistema é chamado de causal (ou não antecipatório), se a saída atual depende apenas de entradas passadas e atuais (nada de futuras). • Nenhum sistema físico é não causal.

  4. Descrição matemática de sistemas • Até que tempo passado a entrada passada afetará a saída atual? • Geralmente, é até -. • Seguir as entradas desde - até o tempo atual, se não impossível, é muito inconveniente. • O conceito de estado permite lidar com este problema.

  5. Definição de estado • O estado de um sistema no tempo é a informação em que, junto com a entrada , para , determina unicamente a saída ) para todo . • Conhecendo-se , não é mais necessário conhecer os valores de para . • As variáveis que compõem o vetor são chamadas variáveis de estado. Assim, pode-se considerar o estado inicial simplesmente como um conjunto de condições iniciais, que sumariza o efeito da entrada passada na saída futura.

  6. Descrição matemática de sistemas

  7. Descrição matemática de sistemas • Utilizando o estado em , pode-se expressar a entrada e a saída do sistema como • Isto significa que a saída é parcialmente excitada pelo estado inicial em e parcialmente excitada pelo sinal de entrada em e após . Logo, não há como conhecer a saída sem conhecer a entrada e o estado (inicial). Em outras palavras, tem-se um par entrada-estado/saída, e não somente entrada/saída.

  8. Descrição matemática de sistemas • Um sistema é agrupado (concentrado) (lumped) se o número de variáveis de estado é finito. • Um sistema é distribuído se seu estado tem infinitas variáveis.

  9. Sistemas lineares • Um sistema é chamado de sistema linear, se para todo e dois conjuntos estado-entrada-saída quaisquer

  10. Sistemas lineares • Combinando as propriedades anteriores, obtém-se a propriedade de superposição

  11. Sistemas lineares • A saída é chamada de resposta à entrada zero quando • A saída é chamada de resposta ao estado zero quando • Resposta = resposta à entrada zero + resposta ao estado zero • (Devido à propriedade da aditividade) • (Note-se que isto não ocorre para sistemas não lineares)

  12. Sistemas lineares • Descrição entrada-saída.Desenvolve-se uma equação matemática para descrever a resposta ao estado zero de sistemas lineares(implicitamente, o estado inicial e assumido como zero). • Considere-se o seguinte sinal pulso.

  13. Sistemas lineares • A entrada pode ser aproximada por uma sequência de impulsos.

  14. Sistemas lineares • A saída no tempo excitada pelo pulso no tempo é • Depois

  15. Sistemas lineares • Quando delta aproxima-se de zero, obtém-se • Um sistema é relaxado em se seu estado inicial em é 0. • Então, todo sistema linear que é causal e relaxado empode ser descrito como

  16. Caso multivariável

  17. Descrição no espaço de estados • Todo sistema linear agrupado pode ser descrito por um conjunto de equações da forma

  18. Sistemas LTI • Sistema lineares invariantes no tempo (LTI)

  19. Sistemas LTI • A descrição entrada-saída fica • Esta é a chamada integral de convolução, e representa a descrição do sistema LTI no domínio do tempo.

  20. Sistemas LTI • Função de transferência dos sistemas LTI

  21. Sistemas LTI • A função de transferência do sistema é a transformada de Laplace da resposta impulsiva (resposta ao impulso). • A resposta impulsiva é a transformada inversa de Laplace da função de transferência.

  22. Sistemas LTI • Para um sistema de p entradas e q saídas

  23. Sistemas LTI A função de transferência do sistema de retardo é uma função de transferência irracional porque se trata de um sistema distribuído. Se o sistema LTI é agrupado, então sua função de transferência será uma função racional.

  24. Sistemas LTI

  25. Sistemas LTI • Toda função de transferência racional pode ser expressa por

  26. Sistemas LTI • Uma função de transferência racional imprópria amplificará ruídos de alta freqüência. • Portanto, esta função de transferência raramente é utilizada em aplicações práticas.

  27. Sistemas LTI • Definição:

  28. Sistemas LTI

  29. Equação no espaço de estados • Todo sistema linear agrupado invariante no tempo, pode ser descrito por a partir de onde se pode obter a matriz de transferência caso .

  30. Linearização • Muitos sistemas físicos são não lineares e variantes no tempo. Alguns deles podem ser descritos pela equação diferencial não linear • Considere-se

  31. Linearização • Então o sistema pode ser expandido

  32. Linearização • Omitindo a ordens altas de

  33. Exemplo 1 Não lineares, e sem possibilidade de linearizar com erro pequeno. Linear Será considerado apenas o atrito viscoso (, sendo o coeficiente de atrito viscoso).

  34. Exemplo 1 Figura 2.10 Característica da mola (não linear). Porém, se o deslocamento for limitado ao intervalo , então a mola pode ser considerada como linear, com boa aproximação, e a força por ela exercida será , sendo a constante da mola.

  35. Exemplo 1 Pela Lei de Newton: , sendo e . Aplicando a transformada de Laplace, assumindo condições iniciais nulas, obtém-se , o que resulta na descrição entrada-saída do sistema e na sua função de transferência

  36. Exemplo 1 Se e , a função de transferência do sistema se torna sua resposta ao impulso do sistema será = e sua descrição por convoluçãoserá

  37. Exemplo 1 Quanto à descrição deste mesmo sistema no espaço de estados, sejam as variáveis de estado Daí, a partir de (2.22) podemos escrever Daí, se obtém a descrição no espaço de estados do sistema, que é

  38. Exemplo 2

  39. Exemplo 3

  40. Exemplo

  41. Exemplo

  42. Exemplo

  43. Linearização de um sistema de nível

  44. Sistemas de tempo discreto • Assume-se que o período de amostragem T é igual para todo sistema de tempo discreto. • Muitos conceitos aplicados a sistemas de tempo contínuo se aplicam a sistemas de tempo discreto. Porém, alguns conceitos variam. • Por exemplo, em sistemas contínuos um sistema de retardo é distribuído, mas em sistemas discretos o sistema de retardo é agrupado se o retardo é um inteiro múltiplo de T.

  45. Sistemas de tempo discreto • Descrição entrada saída. Seja a seqüência impulso • Seguindo um procedimento similar ao utilizado em sistemas contínuos, obtém-se a descrição entrada saída para sistemas relaxados em e causais.

  46. Sistemas de tempo discreto • Seja a transformada Z • Depois

  47. Sistemas de tempo discreto • Exemplo de um sistema de tempo discreto distribuído

  48. Sistemas de tempo discreto • Uma função de transferência racional discreta pode ser própria ou imprópria. Se é imprópria como • Obtém-se um sistema não causal. • O resultado é distinto em sistemas de tempo contínuo, onde uma função de transferência racional imprópria pode ser de um sistema causal.

More Related