1 / 84

Lernen und Klassifizieren AS2-2

Lernen und Klassifizieren AS2-2 . Stochast . Klassifikation. Assoziativspeicher. Lineare Klassifikation. Lernen linearer Klassifikation. Lernen und Zielfunktion. Lernen in Multilayer -Netzen. Backpropagation-Lernen. Neuro-Modell des Assoziativspeichers. Funktion:

lexine
Download Presentation

Lernen und Klassifizieren AS2-2

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Lernen und Klassifizieren AS2-2

  2. Stochast. Klassifikation Assoziativspeicher Lineare Klassifikation Lernen linearer Klassifikation Lernen und Zielfunktion Lernen in Multilayer-Netzen Backpropagation-Lernen Rüdiger Brause: Adaptive Systeme AS-2 WS 2013

  3. Neuro-Modell des Assoziativspeichers Funktion: Jede Komp.ist lin. Summe zi = wix Nichtlin. Ausgabe: yi = SB(zi) = Lernen von W ? - 3 - Rüdiger Brause: Adaptive Systeme AS-2 WS 2013

  4. Lernen im Assoziativspeicher y = Wxr = z =rLr(xr)Txr + • Speichern aller N Muster mit Hebbscher Regel • Auslesen eines Musters r assoziierte Antwort + Übersprechen von anderen Mustern • Orthogonale Muster xr: Übersprechen = 0, exakte Reproduktion. • Nicht-orthogonale Muster: Schwellwerte nötig zum Unterdrücken des Übersprechens. - 4 - Rüdiger Brause: Adaptive Systeme AS-2 WS 2013

  5. Trennung mehrerer Klassen Problem: Klassenentscheidung über Korrelationsgröße x2 xq xp x1 Entscheidung über x: Klasse p: xxp > xxq Klasse q: xxp < xxq Frage: x = xp: In welche Klasse? Antwort: in Klasse q ! Lösung (x-y)2 = x2 -2xy +y2 ist minimal  xy ist maximal genau dann, wenn Konstante Länge c = |x|=|y| (normierte Musteraktivität) - 6 - Rüdiger Brause: Adaptive Systeme AS-2 WS 2013

  6. Trennung mehrerer Klassen Erweiterung der Mustertupel x X‘ = (x0 , x1, x2, ..., xn)mit |x‘|= const weilx20= c2 – |( x1, x2, ..., xn)|2> 0(!)  Einbettung in den Hyperraum Beispiel: 2-dim 3-dim x3 c Entscheidung durch cos (a)= =c–2 xTxr cos(a) monoton fallend  Winkel als Distanzmaß min a max Korrelation x xr xp a x2 xq xk x1 - 7 - Rüdiger Brause: Adaptive Systeme AS-2 WS 2013

  7. Assoziativspeicher: Speicherkapazität M Tupel (x,y) gegeben: Wie viele können zuverlässig gespeichert werden? x1= x2 =...= xM: nur ein Muster speicherbar. y1= y2 =...= yM: beliebig viele Muster speicherbar, da Antwort y immer richtig. Problem der Kodierung der Muster ! Sei |x| = a. • Maximaler Musterabstand • max d(xp,xq) = min xpxq = 0 bei orthogonalen Mustern • Reelle Komponenten: n Dimensionen n orthogonale Basisvektoren • Binäre Komponenten: • Mmax = z.B. n=100, a=10, also max M=10 • Mittlere Abstand maximal  z.B. n = 100 max M  2n/n-0.5 1029 - 8 - Rüdiger Brause: Adaptive Systeme AS-2 WS 2013

  8. Assoziativspeicher: Binärspeicher Spärliche Kodierung Binäre Muster Konstante Zahl von 1 durch eine Leitung pro Eingabecode Speichern: wij = Vp yipxjp = maxp yipxjp Kapazität: HB = ln 2 = 0,693 Bit pro SpeicherzellePalm 1980 vergleichbar mit CAM-Speicher Kodierung k = ax = ld m j = ay = O(log n) CAM vs. Ass.matrix - 9 - Rüdiger Brause: Adaptive Systeme AS-2 WS 2013

  9. Stochast. Klassifikation Assoziativspeicher Lineare Klassifikation Lernen linearer Klassifikation Lernen und Zielfunktion Lernen in Multilayer-Netzen Backpropagation-Lernen Rüdiger Brause: Adaptive Systeme AS-2 WS 2013

  10. Klassenbildung heute Objekte werden durch Merkmale beschrieben z.B. qualitativ Mensch = (groß, braune Augen, dunkle Haare, nett, ...) quantitativMensch = (Größe=1,80m, Augenfarbe=2, Haarfarbe=7, ...) Idee = Form = „Klassenprototyp“ Trennung von Klassen Blütensorte 1 Blütensorte 2 Muster eines Objekts  (Breite, Höhe) = x Höhe Klassenprototyp c 1 c 2 Breite Klassifizierung = Ermitteln der Geradengleichung bzw Parameter c1,c2. - 11 - Rüdiger Brause: Adaptive Systeme AS-2 WS 2013

  11. Höhe x2 Mit z = = wTx c 1 c 2 Klassenentscheidung y = S(z) = Breite x1 Klassentrennung Klassentrennung durch Trenngerade mit f(x1) = x2= w1x1+w3 z<0 z=0 bzw. z = w1x1+w2x2+w3x3 = 0 z>0 mit x3 := 1 Rüdiger Brause: Adaptive Systeme AS-2 WS 2013

  12. x1 x2 SB(z) y = 0: Klasse 1 y = 1: Klasse 2 x3 ... xn-1 Klassenentscheidung y = SB(z) = 1 z = = wTx Klassentrennung durch formales Neuron Klassentrennung durch binäres Neuron z =wTx

  13. Trennung mehrerer Klassen • DEF Lineare Separierung Seien Muster x und Parameter w gegeben. Zwei Klassen 1 und 2 des Musterraums  = 12 mit 12 =  heißen linear separierbar, falls eine Hyperebene {x*} existiert mit g(x*) = wTx* = 0, so daß für alle x1 gilt g(x)<0 und für alle x2 gilt g(x)>0. Rüdiger Brause: Adaptive Systeme AS-2 WS 2013

  14. ALSO : WIE erhalten wir die richtigen Gewichte, d.h. die richtige Klassifizierung ? Lernen ! Rüdiger Brause: Adaptive Systeme AS-2 WS 2013

  15. Stochast. Klassifikation Assoziativspeicher Lineare Klassifikation Lernen linearer Klassifikation Lernen und Zielfunktion Lernen in Multilayer-Netzen Backpropagation-Lernen Rüdiger Brause: Adaptive Systeme AS-2 WS 2013

  16. Das Perzeptron Rüdiger Brause: Adaptive Systeme AS-2 WS 2013

  17. Das Perzeptron Idee: Reize wiedererkennen Rosenblatt 1958 • Künstliche Retina • Assoziations-Schicht • Response-Schicht j X · · · y · · · R A S • Verbindungen zu A fix (zufällig): x = (x1,...,xn)T = (1(S),...,n(S))T • Stärke der Verbindungen zu R veränderbar: w = (w1,...,wn)T Rüdiger Brause: Adaptive Systeme AS-2 WS 2013

  18. Das Perzeptron Entscheiden • := {x} alle Muster,= 1 + 2 1 : Menge aller x aus Klasse 1 2 : Menge aller x aus Klasse 2 Schwelle DEF Log. Prädikat Mit den Erweiterungen x = (x1,...,xn,1)T w = (w1,...,wn,s)T wird Rüdiger Brause: Adaptive Systeme AS-2 WS 2013

  19. Das Perzeptron: Pseudo-code 3 DEF numerische Werte PERCEPT3: Wähle zufällige Gewichte w zum Zeitpunkt t:=0. REPEAT t:= t+1; w(t) = w(t–1) +(L(x) – y(x))x(t)Fehler-Lernregel UNTIL (alle x richtig klassifiziert) Sogar ohne Umdefinition der Muster aus 2!

  20. Das Perzeptron: Konvergenz Perzeptron - Konvergenztheorem(MinskyPapert 1988) Wenn die Mustermenge ilinear separierbarist, so konvergiert der Algorithmus bei t   Problem: Wenn Klassen sich überlappen, so wird die Grenzlinie bei g = 1 immer hin und her geschoben

  21. Gradientenabstieg Rüdiger Brause: Adaptive Systeme AS-2 WS 2013

  22. Lernen durch Iteration Gradientenabstieg einer Zielfunktion R(w) w * w ) R ( w ) - ¶ R ( w ) ¶ W ( t w ( t - 1 ) w w := (w(t-1) – w(t)) ~ – wR(w(t–1)) w(t) = w(t–1) – (t) wR(w(t–1)) - 23 - Rüdiger Brause: Adaptive Systeme AS-1, WS 2009 Rüdiger Brause: Adaptive Systeme AS-2 WS 2013

  23. Das Perzeptron: Zielfunktion Ziel: Verallgemeinerung der Lernregel Hier: Minimierung allerFehlentscheidungen mit L=1 DEF Perzeptron-Zielfunktion „Energie“ Neuformulierung erwartetes Lernen: Gradient d.h. Stochast. Lernen

  24. Perzeptronleistungen Rüdiger Brause: Adaptive Systeme AS-2 WS 2013

  25. Was kann ein Perzeptron ? Erwartung: „Intelligente Leistungen“ durch Wahl von (S) Abbildung der Merkmale auf linear separierbare Mustermengen Perzeptronarten • diameter-limited perceptrons nur Bildpunkte aus einem begrenzten Radius • order-restricted perceptrons von maximal n (beliebigen) Bildpunkten abhängig • random perceptrons eine zufällige Auswahl aller Bildpunkte

  26. Was kann ein Perzeptron ? Topologische Prädikate, z.B. • „X ist ein Kreis“ ? • „X ist eine konvexe Figur“ ? • „X ist eine zusammenhängende Figur“ ? • ... Tatsache: keine korrekte Klassifizierung von Punktmengen X (Bildpixeln) dieser Arten Tatsache: keine korrekte Klassifizierung von Punktmengen X (Bildpixeln) dieser Arten Nur „X hat Eulerzahl E“ E(X) : = K(X) – Anzahl der Löcher Nur „X hat Eulerzahl E“ E(X) : = K(X) – Anzahl der Löcher

  27. Was kann ein Perzeptron ? Eulerzahl E E(X) : = K(X) – Anzahl der Löcher K(X) : = zusammenhängende Komponenten Loch := zusamm. Komponente der komplementären Menge K(x) = 2, Löcher = 1  E(x) = 1

  28. Was kann ein Perzeptron ? Beispiel: keine korrekte Klassifizierung von Punktmengen X (Bildpixeln) für Prädikat „X ist Typ A“ möglich mit „diameter-limited“ Perzeptron Typ A Muster 2 Muster 1 Nicht Typ A Muster 4 Muster 3

  29. Was kann ein Perzeptron ? Beweis: offen: Typ A Nicht Typ A

  30. Adaline Rüdiger Brause: Adaptive Systeme AS-2 WS 2013

  31. Adaline: Aktivität Schwellwert - reglerw 0 Quantisierer S(z) Ausgabe y d Summierer Regler Fehleranzeige Schalterfeld für Eingabemuster Lehrer - Schalter für gewünschte Ausgabe Rüdiger Brause: Adaptive Systeme AS-1, WS 2013

  32. Adaline: Aktivität Verlauf des Klassifizierungsfehlers für „Klasse T liegt vor“ bei Präsentationen von T,G,F und sofortiger Nachregelung

  33. Adaline: Lernalgorithmus Minimierung des erwartetenquadratischen Fehlers R(w,L) := (z(x) – L(x))2x= (wTx – L(x))2x durch Anpassung der Parameter w(t) = w(t–1) – (t)R(w(t–1)) w(t) = w(t-1) –(t)(wTx–L(x))xstochastische Approximation w(t) = w(t–1) –(t)(wTx–L(x)) Widrow-Hoff Lernregel

  34. Übersicht: Lernen Assoziativspeicher 1. Muster xk eingespeichert wi(1) = Likxk(Hebb‘sche Regel) Perzeptron wi(t) = wi(t-1) + (Li(x)-yi)x (Fehler-Lernregel) wi(1) = (Li(xk)-yi)xk = Likxk bei wi(0) = 0 yik(0) = 0. Adaline wi(t) = wi(t-1) + (t)(L(x)-zi)x(Gradientenabstieg) wi(1) = (Li(xk)-zi)xk = Likxk bei wi(0) = 0 zik(0) = 0. Assoziativspeicher = Grundfunktion von Netzen

  35. Stochast. Klassifikation Assoziativspeicher Lineare Klassifikation Lernen linearer Klassifikation Lernen und Zielfunktion Lernen in Multilayer-Netzen Backpropagation-Lernen Rüdiger Brause: Adaptive Systeme AS-2 WS 2013

  36. Übersicht Lernarten • Beispiel-basiertes Lernen (example based learning, feedback learning) Gegeben: ( Eingabex, gewünschte AusgabeL) Ziel: Differenz zwischen y und L im Laufe des Lernens klein machen. • Erklärungs-basiertes Lernen (explanation based learning EBL) Gegeben: Beispielpaare,Ziel sowie Regeln, es zu erreichen. Lernen: Generalisierung der Beispiele. (regelbasierte Systeme, nicht bei neuronalen Netzen) • Score-basiertes Lernen (reinforcement learning) Gegeben: skalares Gütemaß ("gut", "schlecht", mit Abstufungen dazwischen) für Lernleistung. Lernen: ??Der Lernende muss daraus selbst sehen, was an der Ausgabe zu ändern ist. • Unüberwachtes Lernen (observation based learning, emotion based learning, similarity learning) Gegeben: keineexplizite Rückmeldung über die Güte seines Lernens Lernen: Vergleich gewünschte Auswirkungen mit beobachteten Auswirkungen. Folgerung für geeignete Verhaltensänderung.

  37. Lernen durch Iteration Modifikationen Gradientenabstieg • Taylorentwicklung f(x+Dx)= f(x) + Dx+(Dx)2 + ... R(w+w)– R(w) = wR(w)Tw + ½wTRw + ... mit R = Hesse-Matrix • Conjugate gradient R(w+w)– R(w) = (wR(w)T+ ½wTR) w = 0 löse n-dim Gleichungssystem für w

  38. t w t Lernen durch Iteration Newton-Iteration F(w) f(w) f’(w ) t f’(wt) = f(w ) y = w w* w w t+1 wt+1 = wt – Newton-Verfahren wt+1 = wt –

  39. (w(t)) = wR(w) < 0 Lernen durch Iteration Konvergenz des Gradientenverfahrens Es ist R(t) =Ljapunov-Funktionmit Konvergenz, wenn • R(t+1) <R(t) bzw. < 0 monoton fallend • Ex. endliches R0<R(t) für jedes t Ljapunov-Bedingung Also: Wenn dann Konvergenz Hinreichend dafür:= – wR(w) mit  > 0 weil = – (wR(w))2< 0 Mit  und t = 1ist w(t) – w(t-1) = – wR(w) Gradientenabstieg

  40. F ( w ) a | w - w * | + b w * w f ( x , w ) Stochastische Approximation Gesucht: Nullstelle einer stochast. Funktion f(x,w) = r‘(x,w) Methode 1: Alle Ereignisse x abwarten und dann F(w) = f(x,w)xbilden w(t) = w(t-1) – (t) F(w(t-1)) Methode 2: Einfach f(x,w) verwenden Robbins, Monro 1951 w(t) = w(t-1) – (t) f(w(t-1),x(t))stochastische Approximation

  41. Stochastisches Lernen Lernen mit Zielfunktion R(w) =r(w,x)x w(t) = w(t-1) - (t) w R(w(t-1)) wird ersetzt durch Lernen mit stochast. Zielfunktion r(w,x) w(t) = w(t-1) - (t) w r(w(t-1),x(t))stochastisches Lernen

  42. Stochastische Approximation Voraussetzungen das klein Gedruckte... • die Funktion F(w) := f(x,w)x ist zentriert,d.h. F(w*) = 0 • F(w) ist ansteigend, d.h. F(w<w*) < 0, F(w>w*) > 0 • F(w) ist beschränkt mit |F(w)| <a|w-w*|+b < a,b > 0 • f(x,w) hat endliche Varianz,d.h. 2(w) = (F(w) - f(x,w))2x< • (t)verschwindet, (t)  0 • (t)wird nichtzuschnell klein=  • (t) wird nichtzu groß 2 <  Dann ex. (w(t) – w*)2 = 0mittl. quadr. Konv. Robbins-Monro P( w(t) = w*) = 1Blum

  43. Stochastische Iteration: Konvergenz Beispiel Sei die Zufallsvariable x gegeben, geschätzt durch w. Abweichung bei der Schätzung ist R(w) = r(w,x)x = (w-x)2x mean squared error w(t) = w(t-1) - (t) wr(w(t-1),x(t)) stoch. Gradient w(t) = w(t-1) - (t)(w(t-1)-x(t)) Zeitabhängigkeit R(w)  R(w*) bei w  w* stoch. und erwarteter Verlauf?

  44. Stochastische Iteration: Konvergenz Stochastische Iteration w(t) = w(t-1) - (t)(w(t-1)-x(t)) Behauptung Bei(t) := 1/ t ist immer w(t) = xx Beweis durch vollständige Induktion w(0)  0 Kap.2.3.2 • w(t=1) = 0 - (t)(0-x) = x = xxInduktionsverankerung Mit w(t-1) = xt-1= Induktionsvoraussetzung • giltw(t)= ... = xtInduktionsschritt q.e.d.

  45. Konvergenzverlauf x = 1

  46. Erwarteter Konvergenzverlauf RechnungAnhang D.4 • mittl. quadrat. Abweichung • ErwartungswertallerVerläufe • AbweichungdurchStandardabweichungbeschreibbar  |w* - w(t)|  = t = x / t

  47. Konvergenzverlauf Abweichung w*(t) w* = 1, x= 0,288

  48. Probleme Stochastisches Lernen Beispiel Klassentrennung wi(t) = wi(t-1) - (t)(wi(t-1)-x(t)) Behauptung Trotz (t) := 1/ t ist der Klassenprototyp wi(t) ≠ xx Warum ?

  49. Stochast. Klassifikation Assoziativspeicher Lineare Klassifikation Lernen linearer Klassifikation Lernen und Zielfunktion Lernen in Multilayer-Netzen Backpropagation-Lernen Rüdiger Brause: Adaptive Systeme AS-2 WS 2013

  50. Stochastische Musterklassifikation Grundsituation der Erkennung w w Muster x 1 1 w w w w w P ( ) P ( | ) P ( | ) X X 2 i i i 2 mit P(x) . . . . . . w w empfangen M M Quelle, Sender Empfänger a priori a posteriori Notation: Mustermenge  = {x}, unterteilt in Klassen i k = "Klasse k liegt vor " Klassifikation k: P(k|x) = maxj P(j|x) Bayes-Klassifikation Wie erhaltenwirP(j|x) ? - 51 - Rüdiger Brause: Adaptive Systeme AS-2 WS 2013

More Related