330 likes | 338 Views
This comprehensive guide covers crystallography principles including atomic positions, diffraction, symmetry, and unit cells for structural analysis. Explore the fundamentals of structural factors and amplitudes for a deeper understanding.
E N D
Characterization: Classification: Long range ordering periodicity unit cell Symmetry 7 crystal systems 230 space groups Structural information: Unit cell Miller indices (h, k, l) d spacing Relative intensity atomic positions
X-ray Crystallography Introduction Crystal Diffraction Diffraction Structure • Structure Amplitudes, Fhkl • Atomic scattering factors • Fourier transfer Fhkl (x, y, z) • Least squares refinement • Structure properties --- Distance / angles ; packing etc. • Structure data base
Structural Analysis: Data measurement:h, k, l, dhkl , nhkl , Ihkl( F2hkl ) Phase determination heavy atom method; direct method; multiple scattering Fourier transformation: F2 (r); reciprocal real space Least squares refinement: (r) xi, yi, zi, ui Structural model: bond distances; bond angles; atomic thermal vibration etc.
l d Bragg Diffraction
Direction (h, k, l) Amplitude Fhkl Phase Direction (nhkl) Amplitude fi Phase i P1 P2 f1 f2 Resultant Xtotal X1 X2 0 0 0 90 90 90 180 180 180 f1 f2 270 270 270 360 360 450 450 450 540 540 540 Xtotal (f1f2)cos X1 f1cos X2 f2cos P1 1 P2 f1 2 f2 Resultant Xtotal X2 X1 0 0 0 B’ f2 90 90 90 F f2sin2 f2 f1 Xtotal f1cos(1) f2cos(2) 180 180 180 F 2 • cos (f1cos1 f2cos2) sin (f1sin1 f2sin2) 270 f1 f1sin1 1 360 360 A’ 450 450 450 f2sin2 540 540 f1sin1 540 X1 f1cos(1) X2 f2cos(2) Structure Factor Calculation (A)2 (B’)2 F2cos2 F2sin2 F2 Combination of Wave F A’ iB’ F ei Let Xtotal F cos( ) F cos cos F sin sin
Structure Amplitude (Factor) X1 X2 rn S0 S R Detector
Pathlength difference bet. atom n at rn and the origin at 0 Electric field at rn : E0 : electric field amplitude of the incident beam at rn Electric field at P (defection):
mth order Zeroth order ’ mth order E ’ E’ a G D F Incident beam
Bh Fh Ah If centrosymmetric and no anomalous scatter: Bh=0; α=0 orπ
Centric case with non-anomalous scatterers Z pt. charge B = 0 atomic sphere (fixed atom at ri) T=0K B > 0 with thermal vibration T as function of B : Thermal parameter
when at (000) Centric case with anomalous scatterers NA : No. of atom types in an asymmetric unit NE : No. of symm. elements of the space group Ri : sym. operator h : (h, k, l) xj : (xj, yj, zj) if then
2 Å Considering nuclear thermal vibration As a point scatterer thermal vibration electron density smearing if isotropic spherically symmetric
Tanisotropic thermal vibration as an ellipsoid 3×3 matrix 6 elements uij symmetric: u12= u21; u23 = u32; u13 = u31 based on a, b, c,-axis
Thermal ellipsoid diagonize eigen function (three principle axes of the ellipsoid) eigen value u1 u2 u3
Constraint in Thermal vibration In case of ab-plane mirror plane sym: U11 , U22 , U33 , U12 U13=U23=0 x → x y → y z → -z U11 U22 U33 U12 U13 U23 U12=U12 U13 →-U13;U23 →-U23 ∴U13=U23=0
Systematic Absences P21 for any atom i at x y z R1 x -x y+1/2 -z R2x
2(cos2ky i sin2ky) when k 2n 0 when k 2n1 Let hx + lz When 0 i.e. h 0 and I 0 i.e. for 0k0 reflections G0k0 cos2ky cos2[ky (k/2)] i {sin2ky sin2[ky (k/2)]} cos2ky cos2kycosk sin2kysink i sin2ky i sin2kycosk i cos2kysink
Systematic Absences(space group extinction from translational sym. elements)
Difference in phase 2 X-ray Beam Atom Atomic Scattering
r d Atomic Scattering If the atom is a point charge (compared w.r.t the wavelength), it scatters as Z (atomic number) Scattering amplitude amplitude scattered by atom Eatom amplitude scattered by free e- Ee (factor) ρ(r) :electron density around nucleus dq = ρ(r) dV q: charge V : volume
For example fZ Int’l Table of X-ray CrystallographyVol C Ψ mostly from HF p.477 sinθ/λ Analytical form : Vol C.p500.
coefficients of analytical form in atomic scattering factors
Gd Sm 30 30 20 f” f” 20 f” Gd 10 10 30 0 0 20 10 10 f’ f’ 10 20 20 30 30 0 f’ 0 30 20 10 185 1705 1715 184 1710 (Å) (Å) f” Sm 30 20 10 0 f’ 0 30 20 10 Anomalous Scattering (b) (a) • Fig. : • Anomalous scattering terms f’ and f” for: • gadolinium near the L3 edge; • samarium near the L3 edge (d) (c) • Fig. : • Plot in the complex plane of f’ i f”: • gadolinium near the L3 edge; • samarium near the L3 edge
Relationship between Fhkl & ρuvw Atomic scattering Crystal scattering general form with continuous ρ(u,v,w) Corresponds to the intensity of h,k,l refln. reciprocal space corresponds to the electron density at u,v,w position direction space