1 / 33

Crystallography Fundamentals: Structure Analysis and Factors

This comprehensive guide covers crystallography principles including atomic positions, diffraction, symmetry, and unit cells for structural analysis. Explore the fundamentals of structural factors and amplitudes for a deeper understanding.

llucy
Download Presentation

Crystallography Fundamentals: Structure Analysis and Factors

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Characterization: Classification: Long range ordering periodicity  unit cell Symmetry  7 crystal systems  230 space groups Structural information: Unit cell  Miller indices (h, k, l)  d spacing Relative intensity  atomic positions

  2. X-ray Crystallography Introduction Crystal Diffraction Diffraction  Structure • Structure Amplitudes, Fhkl • Atomic scattering factors • Fourier transfer Fhkl  (x, y, z) • Least squares refinement • Structure properties --- Distance / angles ; packing etc. • Structure data base

  3. Structural Analysis: Data measurement:h, k, l, dhkl , nhkl , Ihkl( F2hkl ) Phase determination  heavy atom method; direct method; multiple scattering Fourier transformation: F2  (r); reciprocal  real space Least squares refinement: (r)  xi, yi, zi, ui Structural model: bond distances; bond angles; atomic thermal vibration etc.

  4. l  d Bragg Diffraction

  5. Direction (h, k, l) Amplitude Fhkl Phase  Direction  (nhkl) Amplitude fi Phase i P1 P2 f1 f2   Resultant Xtotal X1 X2  0 0 0   90 90 90 180 180 180 f1 f2 270 270 270 360 360 450 450 450 540 540 540 Xtotal (f1f2)cos X1 f1cos X2 f2cos P1 1 P2 f1 2   f2 Resultant Xtotal X2 X1  0 0 0   B’ f2 90 90 90 F  f2sin2 f2 f1 Xtotal f1cos(1)  f2cos(2) 180 180 180 F 2 • cos (f1cos1  f2cos2)  sin (f1sin1  f2sin2) 270 f1 f1sin1  1 360 360 A’ 450 450 450 f2sin2 540 540 f1sin1 540 X1 f1cos(1) X2 f2cos(2) Structure Factor Calculation (A)2  (B’)2  F2cos2  F2sin2  F2 Combination of Wave F  A’  iB’ F ei  Let Xtotal F cos(  )  F cos cos  F sin sin

  6. Structure Amplitude (Factor) X1 X2 rn S0 S R Detector

  7. Pathlength difference bet. atom n at rn and the origin at 0 Electric field at rn : E0 : electric field amplitude of the incident beam at rn Electric field at P (defection):

  8. mth order Zeroth order ’ mth order  E ’  E’ a  G D F Incident beam

  9. Bh Fh  Ah If centrosymmetric and no anomalous scatter: Bh=0; α=0 orπ

  10. h

  11. Centric case with non-anomalous scatterers Z pt. charge B = 0 atomic sphere (fixed atom at ri) T=0K B > 0 with thermal vibration T as function of B : Thermal parameter

  12. when at (000) Centric case with anomalous scatterers NA : No. of atom types in an asymmetric unit NE : No. of symm. elements of the space group Ri : sym. operator h : (h, k, l) xj : (xj, yj, zj) if then

  13. 2 Å Considering nuclear thermal vibration As a point scatterer thermal vibration  electron density smearing if isotropic  spherically symmetric

  14. Tanisotropic  thermal vibration as an ellipsoid 3×3 matrix  6 elements uij symmetric: u12= u21; u23 = u32; u13 = u31 based on a, b, c,-axis

  15. Thermal ellipsoid diagonize eigen function (three principle axes of the ellipsoid) eigen value u1 u2 u3

  16. Constraint in Thermal vibration In case of ab-plane mirror plane sym: U11 , U22 , U33 , U12 U13=U23=0 x → x y → y z → -z U11 U22 U33 U12 U13 U23 U12=U12 U13 →-U13;U23 →-U23 ∴U13=U23=0

  17. Systematic Absences P21 for any atom i at x y z R1 x -x y+1/2 -z R2x

  18. 2(cos2ky i sin2ky) when k  2n  0 when k  2n1 Let   hx + lz When   0 i.e. h  0 and I  0 i.e. for 0k0 reflections G0k0  cos2ky  cos2[ky  (k/2)]  i {sin2ky  sin2[ky  (k/2)]}  cos2ky  cos2kycosk  sin2kysink  i sin2ky  i sin2kycosk  i cos2kysink

  19. Systematic Absences(space group extinction from translational sym. elements)

  20. Difference in phase 2 X-ray Beam Atom Atomic Scattering

  21. r d Atomic Scattering If the atom is a point charge (compared w.r.t the wavelength), it scatters as Z (atomic number) Scattering amplitude amplitude scattered by atom Eatom amplitude scattered by free e- Ee (factor) ρ(r) :electron density around nucleus dq = ρ(r) dV q: charge V : volume

  22. For example fZ Int’l Table of X-ray CrystallographyVol C Ψ mostly from HF p.477 sinθ/λ Analytical form : Vol C.p500.

  23. f0 for atoms from Z = 1 to 90

  24. coefficients of analytical form in atomic scattering factors

  25. Gd Sm 30 30 20 f” f” 20 f” Gd 10 10 30 0 0 20 10 10 f’ f’ 10 20 20 30 30 0 f’ 0 30 20 10 185 1705 1715 184 1710 (Å) (Å) f” Sm 30 20 10 0 f’ 0 30 20 10 Anomalous Scattering (b) (a) • Fig. : • Anomalous scattering terms f’ and f” for: • gadolinium near the L3 edge; • samarium near the L3 edge (d) (c) • Fig. : • Plot in the complex plane of f’  i f”: • gadolinium near the L3 edge; • samarium near the L3 edge

  26. Atomic f’ and f”

  27. Relationship between Fhkl & ρuvw Atomic scattering Crystal scattering general form with continuous ρ(u,v,w) Corresponds to the intensity of h,k,l refln. reciprocal space corresponds to the electron density at u,v,w position direction space

More Related