340 likes | 650 Views
Vorlesung: 11050: Technische Hydraulik (Teil1) Semester: 2. Semester Raum: siehe aktueller Stundenplan Zeit: siehe aktueller Stundenplan Prüfung: Modulprüfung (Klausur). Prof. Dr.-Ing. E. Ruiz Rodriguez Raum 318, 2. Stock oder (9495 454) Wasserbaulabor Raum 161 (9495 491)
E N D
Vorlesung: 11050: Technische Hydraulik (Teil1) Semester: 2. Semester Raum: siehe aktueller Stundenplan Zeit: siehe aktueller Stundenplan Prüfung: Modulprüfung (Klausur) Prof. Dr.-Ing. E. Ruiz Rodriguez Raum 318, 2. Stock oder (9495 454) Wasserbaulabor Raum 161 (9495 491) email: errodriguez@fab.fh-wiesbaden.de privat: 0611/ 18 99 375 Sprechstunde: siehe Aushang
Wasserbaulabor Gebäude D Raum 160/161
Begriffsdefinitionen zu Fluideigenschaften: real: Das Fluid besitzt eine Viskosität ηF und ist reibungsbehaftet. ideal: Das Fluid besitzt keine Viskosität ηF =0 und ist reibungsfrei kompressibel: Das Fluid ist zusammendrückbar ρF ≠ const. inkompressibel: Das Fluid ist nicht zusammendrückbar ρF= const. Für viele Arbeitsgleichungen in der technischen Hydraulik wird das Fluid Wasser als inkompressibel angenommen. newtonisch: Das Fluid besitzt ein viskositätsabhängiges lineares Scherverhalten (z.B. Wasser, Luft). nonnewtonisch: Das Fluid besitzt kein lineares Scherverhalten (z.B. Schlämme, Pasten, Schäume, Fette, Lacke). Newton´s Reibungsansatz für die Schubspannung zwischen Fluidschichten mit unterschiedlicher Geschwindigkeit:
Begriffsdefinitionen zur Geometrie Stromlinien: Die Stromlinie beschreibt den Strömungsverlauf im Raum. Die Stromlinie verläuft tangential zur Richtung der Fließgeschwindigkeit. Bahnkurve: Der vom Fluidteilchen zurückgelegte Weg wird als Bahnkurve bezeichnet. Bemerkung: Beim schichtartigen laminaren Fließen stimmt die Bahnkurve mit der Stromlinie weitgehend überein. Bei der turbulenten Strömung nicht. Stromröhre: Ein Bündel von Stromlinien bildet eine Stromröhre, dabei wird angenommen, dass deren Wandung undurchlässig ist. eindimensional: Die Strömung wird durch eine Stromlinie rechnerisch beschrieben. eben: Strömung wird in einem zweidimensionalen Strömungsfeld betrachtet. räumlich: Strömung wird in einem dreidimensionalen Strömungsfeld betrachtet.
Begriffsdefinitionen zu Strömungen stationär: Alle Strömungsgrößen im Raum eines Strömungsfeldes bleiben zeitlich unverändert. So ist beispielweise instationär: Die Strömungsgrößen sind zeitveränderlich. An einem Gewässer- querschnitt ändert sich beispielsweise der Durchfluss während des Ablaufes eines Hochwasserereignisses. Verändern sich Strömungen sehr langsam, können sie als quasistationär betrachtet werden. einphasig: An der Strömung ist nur ein homogenes Fluid beteiligt. mehrphasig: An der Strömung sind mehrere Fluide beteiligt (z.B. Mehrphasenströmung im Boden, thermische Schichtung im Wasser, Feststofftransport im Wasser)
Begriffsdefinitionen zu Strömungen laminar: Die Stromlinien verlaufen in einer Schichtenströmung parallel zu einander, der Fluidkörper wird nicht durchmischt. Die Geschwindigkeitsverteilung im Fließquerschnitt ist parabolisch. turbulent: Der Fluidkörper wird völlig durchmischt. Die Geschwindigkeitsverteilung ist ausgeglichener. Die schnelleren Fluidteilchen in Querschnittsmitte beschleunigen die Fluidteilen an Rand, die langsamen Fluidteilchen am Rand bremsen die Fluidteilchen in Querschnittsmitte.
Begriffsdefinitionen zu Strömungen strömend: Physikalische Information wird nach Oberwasser (gegen Fließrichtung) und Unterwasser (in Fließrichtung) weitergegeben. Oberflächenwellen bei strömender Strömung schießend: Physikalische Information wird nur nach Unterwasser (in Fließrichtung) weitergegeben. Oberflächenwellen bei schießender Strömung zur Animation
Chemische und physikalische Kennzahlen von Wasser zu den Diagrammen
Wasserdruck Der Druck p=p(x,y,z) in einer ruhenden Flüssigkeit ist richtungsunabhängig. Der Druck ist ein Skalar und in allen Richtungen gleich. Der Druck p wirkt senkrecht zur betroffenen Fläche. Die Wirkung von p auf ein Flächenelement dA ist eine Druckkraft normal zu dA. Betrachtet man die Druckkräfte für ein Fluidelement dV = dx · dy · dz mit der Masse dm = · dV im Schwerefeld der Erde:
Es ergibt sich folgende Gleichgewichtsbedingung am Fluidelement: Die Gleichgewichtsbedingung in z-Richtung ergibt nach Umstellung mit dG=ρ·g·dx·dy·dz und die Differenzialgleichung für die Druckverteilung in ruhenden Flüssigkeiten
Koordinatensystem bezogen auf den freien Wasserspiegel Randbedingung zur Lösung der Integrationskonstanten C: Für die Stelle h=0 gilt p=p0 So ist: Nach Einführung eines neuen Koordinatensystems und Berechnen der Intergrationskonstanten C erhält man die Gleichung für die Druckverteilung im ruhenden Wasser: p - Wasserdruck [Pa] p0 - Atmosphärendruck [Pa] - Dichte der Wassers [kg/m³] g - Erdbeschleunigung [m/s²] h - Wassertiefe [m] Der Wasserdruck nimmt linear mit der Wassertiefe zu.Der Wasserdruck bleibt in einer Horizontalebene konstant. In der Praxis ist es üblich, den Atmosphärendruck p0 Null zu setzen p0=0. Damit ergibt sich eine vereinfachte Form der Gleichung für die Druckverteilung im ruhenden Wasser: zu den Übungen
Der Wasserdruck p wirkt senkrecht auf die betroffene Fläche. Das Flächenelement dA wird mit der Wasserkraft: belastet. Richtung und Größe der Druckkraft Der Betrag von ist: Die Komponenten von sind: mit eingesetzt ergibt sich: Die gesamtresultierende Wasserkraft ergibt sich zu: Der Betrag der Wasserkraft entspricht dem ρg-fachen Volumen der Druckfigur. Für den 2-dimensionalen „ebenen“ Fall ergibt sich die Richtung von FW aus:
Beispiel einer DruckfigurDrucksegment mit aufgesetzter Fischbauchklappe
Lage der Druckkraft Unter Verwendung des Schwerpunktsatzes ergibt sich, dass der Druckmittelpunkt im Schwerpunkt der Druckfigur liegt. Die Lage der Wasserkraft ist durch den Schwerpunkt der Druckfigur dem sog. Druckmittelpunkt gegeben. Zu Beachten: Der Druckmittelpunkt von Vi ist nicht gleich Flächenschwerpunkt von Ai ! zu den Übungen
Systemzerlegung als Berechnungshilfe Bei gekrümmten Flächen ergeben sich zum Teil sehr komplizierte Druckfiguren, deren Volumen sich nur schwer ermitteln lässt.
Systemzerlegung als Berechnungshilfe Durch Abtrennung von Systemteilen mittels ebener oder gekrümmter Schnitte, sog. Ersatzdeckel, entstehen aus dem Originalsystem mehrere Ersatzsysteme (Systemteile). Für diese können die Wasserdruckkräfte leicht bestimmt werden, besonders wenn sich abgetrennte Systemteile ergeben, die nur Auftrieb oder Abtrieb erfahren. Zusammensetzen der Systemteile und ihrer Druckkräfte ergibt das Originalsystem und dessen resultierende Wasserdruckbelastung. FW
Systemzerlegung als Berechnungshilfe Am nachfolgenden Beispiel werden verschiedene Möglichkeiten der Systemzerlegung mittels Ersatzdeckel gezeigt. Bei der Wahl des Verlaufs des Ersatzdeckels ist darauf zu achten, dass der Ersatzdeckel das Originalsystem völlig einschließt. Zum Beispiel
Auftrieb eingetauchter Körper Kraft von oben: Kraft von unten: Es bleibt die differentiale Kraft: Nach Integration über die Fläche A wird Die Auftriebskraft FW, Auftrieb greift im Masseschwerpunkt S des Verdrängungsvolumens an.
Schwimmfähigkeit von Körpern (Schwimmbedingung) A - Querschnittsfläche der Schwimmebene (Schwimmfläche) VV - Auftriebsvolumen, Verdrängungsvolumen f - Freibord w - Eintauchtiefe (Tiefgang)
Schwimmstabilität Es lassen sich drei Fälle unterscheiden: a) stabile Schwimmlage: Der Körper kehrt nach einer Auslenkung wieder in seine Ausgangslage zurück. b) labile Schwimmlage: Nach einer Auslenkung kehrt der Körper nicht in seine Ausgangslage zurück. Der Körper kentert in eine andere stabile Schwimmlage. c) indifferente Schwimmlage: Eine am Körper angreifende Kraft bewirkt eine Drehung des Körpers. SK – Masseschwerpunkt des Körpers SV – Schwerpunkt des Verdrängungsvolumens vor der Auslenkung SV,1 – Schwerpunkt des Verdrängungsvolumens nach der Auslenkung
Kentersicherheit eines Schwimmkörpers Dabei ist für kleine Winkel (tan ) z = x · die differentiale Auftriebskraft Das von dFW,A erzeugte differentiale Moment um y beträgt dann Die Integration über die Schwimmfläche liefert das Moment My mit (Flächenträgheitsmoment, Flächenmoment 2-Ordnung um y-Achse)
Kentersicherheit eines Schwimmkörpers Moment My versetzt die Auftriebskraft FW,A,1 von ihrem ursprünglichen Angriffspunkt Sv um das Maß a zum neuen Schwerpunkt Sv1 wird. Das dabei entstehende Versatzmoment ist Aufgelöst nach dem Hebelarm a, mit FW,A,1 ·g·VV, wird Wegen der geringen Auslenkung kann geschrieben werden: Damit ist und schließlich, aufgelöst nach der metazentrischen Höhe hM hM - metazentrische Höhe [m] Iy - Flächenträgheitsmoment der Schwimmfläche [m4] VV - Verdrängungsvolumen [m³] e - Abstand zwischen Körper- und Verdrängungsschwerpunkt, wenn SK über SV liegt [m]
Kentersicherheit eines Schwimmkörpers Voraussetzung für stabiles Schwimmen ist, dass das Metazentrum M oberhalb des Körperschwerpunktes SK liegt bzw. die metazentrische Höhe hM > 0 ist. Die Kriterien für die Schwimmstabilität lauten: hM > 0: stabile Schwimmlage hM < 0: labile Schwimmlage hM = 0: indifferente Schwimmlage Liegt der Verdrängungsschwerpunkt SV oberhalb SK ist e negativ, die metazentrischen Höhe positiv und die Schwimmlage stabil.
Vorlesung: 11050: Technische Hydraulik (Teil1) Semester: 2. Semester Raum: siehe aktueller Stundenplan Zeit: siehe aktueller Stundenplan Prüfung: Modulprüfung (Klausur) Prof. Dr.-Ing. E. Ruiz Rodriguez Raum 318, 2. Stock oder (9495 454) Wasserbaulabor Raum 161 (9495 491) email: errodriguez@fab.fh-wiesbaden.de privat: 0611/ 18 99 375 Sprechstunde: siehe Aushang