530 likes | 792 Views
Single Photon Detectors and Photon statistics detection. Lior Cohen. Quantum optics course 18-20 March 2019. Motivation. Establishing quantum theory Optics based quantum technologies. Photomultiplier tubes. Photoelectric effect Secondary emission effect. Photomultiplier tubes.
E N D
Single Photon Detectors andPhoton statistics detection Lior Cohen Quantum optics course 18-20 March 2019
Motivation • Establishing quantum theory • Optics based quantum technologies
Photomultiplier tubes • Photoelectric effect • Secondary emission effect
Application-Image intensifier ~10um ~1mm
Quantum efficiency • The probability that a single photon incident on the detector generates a signal • Losses: • Reflection probability • Absorption probability • a fraction of the electron hole pairs recombine in the junction
n(p) doped semiconductors Conductionband Ec Semi- conductor Na Ef Nd Nd Na Ev Nd Na Valence band
P-N junction n p + - + - E Ef Energy eV0 Occupations x
P-N junction - n p +V Ef eV0 Energy e(V0-V) Occupations x
P-N junction +V n p - Ef Energy Occupations x
P-N Photodiode +V n p - Ef Energy Occupations x
Dark counts +V n p - Ef Energy Occupations x
Avalanche Photodiode Linear photodiode Avalanche photodiode
Geiger mode • APD is biased above the breakdown voltage • At normal, there isn’t current because there isn’t charge carrier • When photon generates a pair the avalanche begins
Quenching • Quenching:=stop the avalanche process • Passive quenching (~10ns) • Active quenching, (~1ns) Voltage/50mV Time/50ns Voltage/20mV Time/2ns J. Zhang, et al. SPIE, (2010) p. 76810Z.
Dead time • Dead time:= The time duration which the detector can’t detect after successful detection
Photon number resolving detectors based on APDs 40um • Array detectors • Visible light photon counter
Photon number resolving detector based on APDs – array detector Signal height histogram voltage 11 10 Oscilloscope signal 9 8 7 6 5 4 3 2 1 0 time
Up conversion detectors momentum conservation kp ks signal idler ki energy conservation ws pump wi Nonlinear crystal wp Langrock, C., et al. Opt. Lett., 30, 1725-1727 (2005).
Nano-wire detectors • Photon hits the surface and causes heat • The current concentrates around the hit spot and heats it too • An avalanche process heats the all width and a big current change can be measured Gol'tsman, G. N. et al. . Appl. Phys. Lett.79, 705–707 (2001).
Nano-wire detectors • “Avalanche” process = no photon resolution • Rapid process = short dead time • Low temperature = low dark counts • Sub wavelength structure = low efficiency Gol'tsman, G. N. et al. . Appl. Phys. Lett.79, 705–707 (2001).
Nano-wire detectors • Increasing efficiency by increasing structure (and adding cavity) • Some photon resolution by integrating few devices
TES detectors • Photon impact causes heat and changes the resistance at 100mK • The dc-SQUID amplifiers measure and amplify the current change at 4K • The weak signal is amplified with room temperature electronics Miller, A. J., Nam, S. W., Martinis, J. M. & Sergienko, A. V. . Appl. Phys. Lett.83, 791–793 (2003).
TES detectors • Slow process = long dead time • Low temperature = low dark counts • Highest efficiency • Linear system = photon resolution Miller, A. J., Nam, S. W., Martinis, J. M. & Sergienko, A. V. . Appl. Phys. Lett.83, 791–793 (2003).
TES detectors • Previous bunching experiments showed coincidence with SPD (not untibunching) • With TES , bunching experiments showed 2 photons arrival (bunching) G. Di Giuseppe et al. Phys. Rev. A, 68 063817 (2003)
Wigner function - reminder • Quasi-probabilistic distribution • Can be negative (only quantum state) • Contains all the information about the state (including photon statistics)
Homodyne detection – measuring the Rotated quadratures • Rotated quadratures
Homodyne detection – measuring the Rotated quadratures • Rotated quadratures
Inverse Radon transform – reconstruction of Wigner function • Rotated quadratures K. Vogel and H. Risken, Phys. Rev. A 40, 2847 (1989).
Reconstruction of Wigner function – squeezed vacuum state G. Breitenbach, S. Schiller, and J. Mlynek, Nature 387, 471 (1997).
Photon statistics – Wigner function G. Breitenbach, S. Schiller, and J. Mlynek, Nature 387, 471 (1997).
Wigner function by PNRD K. Laiho, K. N. Cassemiro, D. Gross, and C. Silberhorn, Phys.Rev. Lett. 105, 253603 (2010)
Bibliography • Fundamentals of Photonics, Saleh & Teich, Wiley 1991 • http://sales.hamamatsu.com/assets/applications/ETD/pmt_handbook_complete.pdf • Hadfield, R. H. "Single-photon detectors for optical quantum information applications". Nature Photon.3, 696–705 (2009)