1 / 22

An Introduction to CLEO-c

An Introduction to CLEO-c. THE CLEO COLLABORATION Albany • CalTech • Carnegie Mellon Cornell • Florida • Harvard Illinois • Kansas • Minnesota Oklahoma • Ohio State • Pittsburgh Purdue • Rochester • SMU Syracuse • UC San Diego • Vanderbilt Wayne State +. Motivation.

Download Presentation

An Introduction to CLEO-c

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. An Introduction to CLEO-c THE CLEO COLLABORATION Albany • CalTech • Carnegie Mellon Cornell • Florida • Harvard Illinois • Kansas • Minnesota Oklahoma • Ohio State • Pittsburgh Purdue • Rochester • SMU Syracuse • UC San Diego • Vanderbilt Wayne State + ...

  2. Motivation • Fundamental flavor physics in charm sector • Precise methods for strongly interacting theories need development, verification • Nonperturbative QCD limits flavor physics • Physics beyond Standard Model will have nonperturbative sectors. • Physics beyond the Standard Model may appear in unexpected places. CLEO-c: precise measurements of semileptonic, leptonic rates, absolute branching fractions … CLEO-c: precise measurements of form factors, decay constants, quarkonia spectroscopy and decay, … CLEO-c: D-mixing, charm CP, rare decays of charm and tau.

  3. Lattice QCD -- finally? • Only complete definition of QCD • perturbative and nonperturbative • 1989: Ken Wilson declares dead • Last 5 years: renaissance • improvements in algorithms drive progress • perturbation theory “fixed” • NRQCD,HQET for heavy quarks • improved discretizations (large lattice spacings) • Cornell workshop (Jan. 2001): • ~1% accuracies possible within 2-3 years with current techniques • B,D systems •  and  • Light systems • New data  new techniques • Eg. Glueballs: handle unstable states

  4. Precision CKM constraints? • How would CKM magnitude constraints differ w/ few percent uncertainties? • Crucial caveats: • Need precision theory (lattice < 10 yrs) • Need precision checks of theory (CLEO-c) • Need roadmap to translate precision on <P|Jm|0> (fP) to that on <P0|H|P0> (BPfP)

  5. Precision CKM constraints? • How would CKM magnitude constraints appear w/ few percent uncertainties? • Crucial caveats: • Need precision theory (lattice < 10 yrs) • Need precision checks of theory (CLEO-c) • Need roadmap to translate precision on <P|Jm|0> (fP) to that on <P0|H|P0> (BPfP) Current uncertainties

  6. Precision CKM constraints? • How would CKM magnitude constraints appear w/ few percent uncertainties? • Crucial caveats: • Need precision theory (lattice < 10 yrs) • Need precision checks of theory (CLEO-c) • Need roadmap to translate precision on <P|Jm|0> (fP) to that on <P0|H|P0> (BPfP) Few % uncertainties

  7. The CLEO-c Program 2 0 0 2 Prologue: Upsilons ~1-2 fb-1 ea. Y(1S) ,Y(2S), Y(3S)… Spectroscopy, Matrix Elements, Gee 10-20 times existing world’s data In the works 2 0 0 3 Act I: y(3770) -- 3 fb-1 30M events, 6M tagged D decays (310 times MARK III) 2 0 0 4 Act II: √s ~ 4100 -- 3 fb-1 1.5M DsDs, 0.3M tagged Ds decays (480 times MARK III, 130 times BES II ) 2 0 0 5 Act III: y(3100) -- 1 fb-1 1 Billion J/y decays (170 times MARK III 20 times BES II)

  8. The CLEO III Detector 93% of 4p sp/p = 0.35% @1GeV dE/dx: 5.7% p @minI 83% of 4p 87% Kaon ID with 0.2% p fake @0.9GeV 1.5 T now,... 1.0T later 93% of 4p sE/E = 2% @1GeV = 4% @100MeV Trigger: Tracks & Showers Pipelined Latency = 2.5ms Data Acquisition: Event size = 25kB Thruput < 6MB/s 85% of 4p For p>1 GeV

  9. CESR: s ~ 2–5 GeV? • Low E task force (Apr. 2000) • CLEO solenoid 1.5T  1T • Long damping time () problematic •  add wigglers to decrease  • Wiggler’s now being prototyped • 2T over 5 cm beam aperture •  superconducting only option • Normal Cu/Fe: 300 kW power/unit (4MW!) • Permanent: 1.2T maximum • Final configuration: 14 modules • Short, modular, identical • Same technology needed for NLC damping rings • $5M for CESR reconfiguration

  10. CESR projections • Expected machine performance: • Best estimate: 3x1032 cm-2 s-1@ 1.885 GeV • Wiggler-dominated radiation: L ~ E2 • Ebeam/Ebeam ~ 8x10-4 at J/ • yield estimations: Conservative L ~ E3 • (4S): Ldt = 70 pb-1/day  50 pb-1/day • (beam width folded into effective) • 5 days/wk • 7 months / yr • Synchrotron radiation source needs 10 GeV

  11. Anticipated schedule • July ‘01: install superconducting quads • Low E machine studies + 10 GeV physics can coexist • Nov ‘01: (nS) running • ~Oct ‘02: CLEO-c/CESR reconfig. • silicon  drift chamber replacement • additional RF cavities • wiggler installation • Spring ‘03: charm running • Weak physics: (3770), DSDS (~4.1 GeV) • QCD: J/  • 3-4 year program for charm running • Main 3 yr program plus: •  threshold (m), cc threshold (pK), ’, R “spot checks”, (nS) w/ n>4

  12. EW highlights • D(S)/, D(S)Xl • Precision fD, fDs, BSL, form factors • Precision Vcd, Vcs (7%,16%  ~1.5%) • Confront QCD theory predictions •  • Vub, Vcb, hopefully  FBBB, FKBK, … • Absolute branching fractions (1-2%) • B rates “normalized” to D branching frac’s • D0K-p+, D+K-p+pimproved Vcb • Factorization • Future Rb, Rc • Mixing/CP: coherent D0D0 at (3770) • correlations  unique opportunities C=-1 L= 1

  13. QCD Probes • Verify tools for strongly–coupled theories • Quantify accuracy for extracting EW physics • Glueball (gg) spectra (lack thereof?!) • Gauge particles as constituents! • Also: hybrids ( ) • bb/cc resonances • Mass spectra  •  • Radiative transitions  ¯ confinement relativistic corr.’s wave fcn. technology: Form factor tech.

  14. c ¯ c      X G M Glueball search: 3-prong strategy • J/ • CLEO-c: 109 J/  ~6 x 107 J/ X • Copious color singlet gg: JPC=0++,0-+,2++ • Partial Wave analysis: • JP’s of contributing resonances • Absolute BF’s: pp,KK,pp,,… • Handle #1 on gluonic content • e+e-  e+e-  e+e-X • CLEO-c: 25 fb-1 good gg data already handles

  15. G M • (1S)X (1S) vs J/ : Rate suppressed ~4000 in 1.5 GeV range No PWA, BF’s glueball vs mesonic content? Farrar, Close, Li

  16. Inclusive help: •  spectrum from J/ X: • 10-4 sensitivity for narrow resonance • Eg: ~25% efficient for fJ(2220) • Suppress hadronic bkg: J/X

  17. fJ(2220): Glueball candidate • Now you see it… BES (1996) MKIII (1986)

  18. ?? LEAR 1998 L3 1997 2 3 • Now you don’t… • Crystal barrel: • pp • … or do you? • … or don’t you? OPAL 1998 L3 Signal Jetset collaboration: A new signal in  rumored (2001) 2 3 MKK

  19. fJ(2220): CLEO-c reach • fJ2220 • CLEO II: B fJ /KSKS < 2.5(1.3) eV • CLEO III: sub-eV sensitivity • Compare f2’ (ss): BKK ~ 90 eV • (1S): Tens of events

  20. Scalar (0++) glueball • 0++: 3 broad states • f0(1370) • f0(1500) • fJ(1710) • qq and gg mix • Supernumerary states? Morningstar, Peardon CLEO-c: Confirm JP Establish JP • Can measure many branching fractions… • needed for gluonic vs mesonic content

  21.  resonances • Heavy hybrids (qqg) • Expect ~1 GeV heavier than qq counterpart • Search using (1S)(ccg) + X • Find it: scan e+e- at ccg resonance • bbg: “guided” scan? •  studies: good lattice teeth-cutting • Establish: 75 evt’s • Discover/probe b(’), hb • 13000 (1S)b • ~60 (2S)b • (3S): b’, hb • Scans:ee to few % • (n+1S)(nS) • ee/ • Bll < 1%

  22. CLEO-c program: summary • Powerful physics case • Precision flavor physics - at last! • Nonperturbative QCD - at last! • Probe for New Physics • Unique: not duplicated elsewhere • High performance detector • Flexible, high-luminosity accelerator • Experienced collaboration • New collaborators welcome/encouraged! • Optimal timing • Flavor physics of this decade • Beyond the SM in next decade • Resonance with LQCD...

More Related